[go: up one dir, main page]

login
A227886
G.f. A(x) satisfies: prime(n-1) iteration of A(x) yields a zero coefficient of x^n for n>2.
1
1, 1, -2, 6, -24, -820, 27144, -1291488, 59107938, -3469468244, -551251146312, 110380085358300, -14603070221993568, 1245952635117666628, 29007906387788967008, -20843885535528328473491, -180339645015007436197752, 127321605693530805940344950, 281613877399819446654643101264
OFFSET
1,3
LINKS
EXAMPLE
G.f.: A(x) = x + x^2 - 2*x^3 + 6*x^4 - 24*x^5 - 820*x^6 + 27144*x^7 +...
Coefficients in the prime iterations of A(x) begin:
[1, 2, -2, 3, -10, -1818, 47740, -2337494, 105376812, ...];
[1, 3, 0, -3, 0, -2772, 60624, -3189473, 140910696, ...];
[1, 5, 10, 0, -40, -4650, 64048, -4546444, 185930620, ...];
[1, 7, 28, 63, 0, -6958, 36288, -5825281, 201609418, ...];
[1, 11, 88, 561, 2816, 0, -88880, -10110089, 134676036, ...];
[1, 13, 130, 1092, 7800, 34658, 0, -13180700, 29207048, ...];
[1, 17, 238, 2958, 33320, 327012, 2674984, 0, -240789190, ...];
[1, 19, 304, 4389, 58368, 703988, 7570512, 51417135, 0, ...];
[1, 23, 460, 8487, 147200, 2401338, 36774976, 501489263, 5774993410, 0, ...]; ...
where the coefficient of x^n in the prime(n-1) iteration of A(x) equals zero for n>2.
PROG
(PARI) {ITERATION(n, F)=local(G=x); for(i=1, n, G=subst(G, x, F)); G}
{a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(ITERATION(prime(#A-1), x*Ser(A)))[#A]/prime(#A-1)); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A061774 A110729 A088258 * A290961 A089718 A123150
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 25 2013
STATUS
approved