[go: up one dir, main page]

login
A227204
Largest number in a 6-tuple (a,b,c,d,e,f) of positive integers satisfying the Markoff(6) equation a^2 + b^2 + c^2 + d^2 + e^2 + f^2 = 3*a*b*c*d*e*f.
0
2, 4, 10, 11, 23, 26, 64, 68, 119, 131, 134, 178, 274, 373, 466, 551, 779, 781, 1220, 1418, 1561, 2110, 2174, 3194, 3265, 3566, 4223, 4552, 5303, 8362, 8644, 9244, 12671, 14279, 16897, 17291, 18491, 18601, 18902, 21892, 23344, 26531, 36311, 38906, 57314, 60752, 69566, 71614, 73852
OFFSET
1,1
EXAMPLE
2 is in the sequence since (2, 2, 1, 1, 1, 1) is a solution to a^2 + b^2 + c^2 + d^2 + e^2 + f^2 = 3 *a*b*c*d*e*f. 4, 10, and 11 are in the sequence since (4, 2, 1, 1, 1, 1), (10, 4, 1, 1, 1, 1), (11, 2, 2, 1, 1, 1) are solutions with a>=b>=c>=d>=e>=f>=g. This sequence lists the first components among all solutions in increasing order.
CROSSREFS
Cf. A002559.
Sequence in context: A293556 A029984 A101519 * A249446 A184815 A290473
KEYWORD
nonn
AUTHOR
Shanzhen Gao, Sep 18 2013
STATUS
approved