[go: up one dir, main page]

login
A226366
Numbers k such that 5*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.
15
7, 25, 39, 75, 127, 1947, 3313, 23473, 125413
OFFSET
1,1
COMMENTS
No other terms below 5330000.
The reason all terms are odd is that if k is even, then 5*2^k + 1 == (-1)*(-1)^k + 1 = (-1)*1 + 1 = 0 (mod 3). So if k is even, then 3 divides 5*2^k + 1, and since 3 divides no other Fermat number than F_0=3 itself, we do not have a Fermat factor. - Jeppe Stig Nielsen, Jul 21 2019
LINKS
Wilfrid Keller, Fermat factoring status
J. C. Morehead, Note on the factors of Fermat's numbers, Bull. Amer. Math. Soc., Volume 12, Number 9 (1906), pp. 449-451.
Eric Weisstein's World of Mathematics, Fermat Number
MATHEMATICA
lst = {}; Do[p = 5*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 3313, 2}]; lst
PROG
(PARI) isok(n) = my(p = 5*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018
CROSSREFS
Subsequence of A002254.
Sequence in context: A110081 A140716 A141393 * A294459 A075927 A119617
KEYWORD
nonn,hard,more
AUTHOR
STATUS
approved