[go: up one dir, main page]

login
A226078
Table read by rows: prime power factors of central binomial coefficients, cf. A000984.
9
1, 2, 2, 3, 4, 5, 2, 5, 7, 4, 9, 7, 4, 3, 7, 11, 8, 3, 11, 13, 2, 9, 5, 11, 13, 4, 5, 11, 13, 17, 4, 11, 13, 17, 19, 8, 3, 7, 13, 17, 19, 4, 7, 13, 17, 19, 23, 8, 25, 7, 17, 19, 23, 8, 27, 25, 17, 19, 23, 16, 9, 5, 17, 19, 23, 29, 2, 9, 5, 17, 19, 23, 29, 31
OFFSET
0,2
LINKS
FORMULA
T(n,k) = A141809(A000984(n),k) for k = 0..A067434(n)-1.
EXAMPLE
. n initial rows A000984(n) A226047(n)
. ---+------------------------------+-------------+------------
. 0 [1] 1
. 1 [2] 2 2
. 2 [2,3] 6 3
. 3 [4,5] 20 5
. 4 [2,5,7] 70 7
. 5 [4,9,7] 252 9
. 6 [4,3,7,11] 924 11
. 7 [8,3,11,13] 3432 13
. 8 [2,9,5,11,13] 12870 13
. 9 [4,5,11,13,17] 48620 17
. 10 [4,11,13,17,19] 184756 19
. 11 [8,3,7,13,17,19] 705432 19
. 12 [4,7,13,17,19,23] 2704156 23
. 13 [8,25,7,17,19,23] 10400600 25
. 14 [8,27,25,17,19,23] 40116600 27
. 15 [16,9,5,17,19,23,29] 155117520 29
. 16 [2,9,5,17,19,23,29,31] 601080390 31
. 17 [4,27,5,11,19,23,29,31] 2333606220 31
. 18 [4,3,25,7,11,19,23,29,31] 9075135300 31
. 19 [8,3,25,7,11,23,29,31,37] 35345263800 37
. 20 [4,9,5,7,11,13,23,29,31,37] 137846528820 37 .
MAPLE
f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
b:= proc(n) local p;
p:= add(f(n+i) -f(i), i=1..n);
seq(`if`(coeff(p, x, i)>0,
i^coeff(p, x, i), NULL), i=1..degree(p))
end:
T:= n-> `if`(n=0, 1, b(n)):
seq(T(n), n=0..30); # Alois P. Heinz, May 25 2013
MATHEMATICA
Table[Power @@@ FactorInteger[(2n)!/n!^2] , {n, 0, 30}] // Flatten (* Jean-François Alcover, Jul 29 2015 *)
PROG
(Haskell)
a226078 n k = a226078_tabf !! n !! k
a226078_row n = a226078_tabf !! n
a226078_tabf = map a141809_row a000984_list
CROSSREFS
Cf. A067434 (row lengths), A001316 (left edge), A060308 (right edge), A226047 (row maxima), A226083 (row minima), A000984 (row products).
Cf. A267823.
Sequence in context: A328628 A328629 A342022 * A065648 A305977 A329048
KEYWORD
nonn,tabf,look,changed
AUTHOR
Reinhard Zumkeller, May 25 2013
STATUS
approved