OFFSET
-1,6
LINKS
FORMULA
Expansion of eta(q) * eta(q^3) / (eta(q^7) * eta(q^21)) in powers of q.
Euler transform of period 21 sequence [ -1, -1, -2, -1, -1, -2, 0, -1, -2, -1, -1, -2, -1, 0, -2, -1, -1, -2, -1, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u*v * (u*v + 7) - (u+v) * (u^2 - 3 * u*v + v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (21 t)) = 7 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A226007.
G.f.: 1/x * Product_{k>0} (1 - x^k) * (1 - x^(3*k)) / ((1 - x^(7*k)) * (1 - x^(21*k))).
Convolution inverse is A226007.
a(n) = A058564(n) unless n=0.
EXAMPLE
G.f. = 1/q - 1 - q - q^2 + q^3 + 2*q^4 - q^5 + 3*q^6 - q^7 - q^8 - 2*q^9 + q^11 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^3] / (q QPochhammer[ q^7] QPochhammer[ q^21]), {q, 0, n}]; (* Michael Somos, Apr 12 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) / (eta(x^7 + A) * eta(x^21 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 22 2013
STATUS
approved