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1 Indefinite Binary Quadratic Forms and Periods

These notes are based on the books by Scholz-Schoeneberg [14] and Buell [1]. The classical texts are
Lagrange [7] and Gauss [3]. For a historical review see Dickson [2]. The relation between the periods (or
cycles) of indefinite binary quadratic forms and the continued fraction expansion of associated quadratic
irrationals is treated in Buell’s book. We use a slightly different version, which is the reason for these
notes.

An indefinite binary quadratic form F = a x2 + b x y + c y2 , with integers a, b, and c, of discriminant
D > 0 is denoted by F ([a, b, c], [x, y]) or F (A, ~x) with the matrix A = Matrix([[a, b/2], [b/2, c]]) and
the column vector ~x = (x, y)⊤. F = ~x⊤A ~x. Sometimes one denotes a form just by [a, b, c]. (Note

that [3] uses 2 b instead of b, and the discriminant, called in the English translation determinant, is
D

4
.)

Only primitive forms with gcd(a, b, c) = 1 are considered. A representation of an integer k by a form
F is called proper if gcd(x, y) = 1, and improper otherwise. The discriminant of a form, and of the
corresponding characteristic polynomial F (x) = F ([a, b, c], [x, 1]) = a x2 + b x + c, is D = b2 − 4 a c
and for indefinite forms it is positive. The possible values for D are 0 (mod 4) or 1 (mod 4) and no (pure)
squares are allowed. See [12] A079896 (such A-numbers will be used later on without giving the reference
to OEIS). Reduced forms are defined in the two mentioned books in a different but equivalent way.

Definition: Reduced forms (see also [3], art. 183, p. 152)

I) [14], p. 112: An indefinite form of discriminant D is called reduced if, with f(D) :=
⌈√

D
⌉

(ceiling

function),
0 < b, f(D) − min{2 |a|, 2 |c|} ≤ b < f(D) . (1)

II) [1], p. 21: An indefinite form of discriminant D is called reduced if

0 < b <
√
D,

√
D − b < 2 |a| <

√
D + b . (2)

and it follows ([1], Proposition 3.1.) that also
√
D − b < 2 |c| <

√
D + b.

Proof of the equivalence:

Before giving the proof we notice that in both versions one has for reduced forms

a c < 0 and 4 |a c| < D. (3)

The first statement can be proven indirectly in version I) because f(D) − 1 <
√
D < f(D). Here

the irrationality of
√
D and the definition of f(D) have been used. Assume that a c > 0 (neither a nor

c vanishes because otherwise b would also have to vanish). Then f(D) − 1 <
√
b2 − 4 a c < b (the

positive root is always taken). But together with b < f(D) this leads to a contradiction because f(D)
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and b are integers. In version II) this is proven directly by squaring b <
√
D (monotony of the function

x2), b2 < b2 − 4 a c. The second inequality in eq. (3) is then −4 a c < D which is trivial because b2 > 0
holds in both definitions.

I) ⇒ II): b ≥ f(D) − min{2 |a|, 2 |c|} ≥ f(D) − 2 |a| >
√
D − 2 |a| , and the same works with

2 |c|. b > 0 and from above 0 < −4 a c = D − b2, hence (monotony of the
√
x function) b <

√
D.

One of the remaining inequalities to prove is |2 a| − b <
√
D which becomes, after using the D formula

and squaring, b + |c| > |a|. Similarly the other one is equivalent to b + |a| > |c|. Both inequalities
follow from the just derived result b + 2 |a| >

√
D, and similarly for 2 |c|. Squaring this and using the

D formula leads to b + |c| > |a| and b + |a| > |c|.
II) ⇒ I): 0 < b <

√
D < f(D). (f(D) − 1) − min(2 |a|, 2 |c|) <

√
D − min(2 |a|, 2 |c|) < b from

f(D) =
√
D, and this is true for 2 |a| and 2 |c| separately. But from f(D)−min(2 |a|, 2 |c|) < b+1 follows

that actually f(D)−min(2 |a|, 2 |c|) ≤ b because the l.h.s. is an integer.

The number of reduced forms for each discriminant D is finite (see [1], Proposition 3.2. on p. 22). See
A082174 for these numbers for primitive and A082175 for imprimitive forms.

Two forms F (A, ~x) and F (A′, ~x′) are said to be properly equivalent if A′ = M−1,T AM−1 with some
integer matrix M with DetM = +1. I.e., M ∈ SL(2,Z) (a special Moebius transformation, see
e.g., [1] pp. 9-12, for SL(2,Z)). Note that with ~x′ = M~x one has for the representation of an integer
k = F (A, ~x) = F (A′, ~x′). Proper equivalence will mostly be used in these notes, therefore we just
write equivalent, using the symbol F1 ∼ F2. In the other case we write improper equivalence.

With [14], p. 113, we define a half-reduced form with the weaker requirement f(D) − |2 a| ≤ b < f(D).
A half-reduced right neighbour form FR equivalent to F (A, ~x) is obtained from AR = R⊤ AR as
FR = [c, −b + 2 c t, F (A, (−1, t)⊤)] with the R = R(t) = Matrix([[0,−1], [1, t]]), and this form is

unique because t is determined by t =

⌈

f(D) + b

2 c
− 1

⌉

if c > 0 and t =

⌊

1 − f(D) + b

2 |c|

⌋

if c < 0.

The proof follows immediately from the half-reduced requirement for FR. We denote such a half-reduced

right neighbour relation of F2 to F1 by F1
R∼ F2. Starting with any indefinite form of some discriminant

D a unique chain of half-reduced right neighbours can be built. At some step one will reach a reduced
form, and from then on all members of the chain will be reduced. This is the content of [14] proposition

(Satz) 79 on p. 113. The proof is lengthy and implies that if F1 is a reduced form then F1
R∼ F2 implies

that also F2 is reduced. Because of the finite number of reduced forms for D, each chain will become
periodic starting with the first reduced form. The period length will be called L. Because each form of
a given D is equivalent to a reduced form (via the chain of half-reduced right neighbours) the number of
equivalence classes for D, called the class number, is finite. This number is denoted by h(D) or H(D)
in [14], p. 101, and [1], p. 7, respectively. It coincides with the number of different (periodic) chains of
reduced forms for given D. See [1], Appendix 2, pp. 235-243, where Table 2A lists the numbers for odd
D and Table 2B for even D, for D < 10000. See also A087048.

Lemma 1: t c > 0 for half-reduced right neighbour of reduced forms

If a reduced form F1 = [a, b, c] of discriminant D has the half-reduced right neighbour form F2 =

[a2, b2, c2], i.e., F1
R∼ F2 with some matrix R(t), then c t > 0.

Proof: This follows from the formulas for t and f(D)−1 <
√
D < f(D), because

√
D is irrational. If c >

0 the 2ct ≥ f(D) + b− 2c >
√
D + b and from eq. (2) for reduced F this is > 2c, hence ct > 0. If c < 0

then 2|c|t ≤ 2|c| − (f(D) + b) < 2|c| − (
√
D + b) and this is < 0 because

√
D + b > 2|c|. Hence −ct <

0, or ct > 0.

Note that this Lemma is not true if F is only half-reduced, e.g., F = [8, −8, 1] and F2 = [1, 4, −4],
with t = −2, hence ct < 0,
This result will later (in Lemma 5) be employed for a certain period of forms, showing alternating t-signs.

In [1], p. 23, two reduced forms F = [a, b, c] and F ′ = [c, b′, c′] of D are called adjacent if b + b′ ≡
0 (mod 2 a). We denote this relation by F

adj∼ F ′. Clearly, if F
R∼ F ′ then F

adj∼ F ′. On the other
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hand, if F
adj∼ F ′ then both forms are reduced and F ′ is the right neighbour form of F because a′ = c

and b′ = −b + 2 c t with some uniquely determined non-vanishing t ∈ Z. The equivalence matrix is

R

(

t =
b+ b′

2 c

)

. But then F ′ is certainly half-reduced and F
R∼ F ′. Hence, for reduced forms both

equivalence relations coincide. In [1] it is shown that the set of reduced forms for D is partitioned into
cycles of adjacent forms (Proposition 3.4. on p. 23), i.e., into periods of half-reduced right neighbour
forms, each in fact reduced. The period length L is always even, L = 2 l (Proposition 3.6. on p. 24,
and see the remark in the proof of Lemma 5 later). For a list of the periods of discriminant D, for
D = 5, 8, 12, ..., 232 see the W. Lang link under A225953.

Of interest are also the two forms F = [a, b, c] and F ′ = [c, b, a] of D (exchange of a and c, or
reversed order). They are certainly improperly equivalent due to the transformation matrix M−1 =
Matrix([[0, 1][1, 0]]). See [14], p. 106, and [1], p. 24 . Such forms are called associated. It is clear that
if a form F is reduced its associated form F ′ is also reduced. (There is no self-associated reduced form,
having a = c, due to the first of eqs. 3.) However, a reduced form F ′ associated to a reduced form F may
not lie in the same period (or cycle). The smallest D where this happens is D = 136, F = [−5, 4, 6]
and F ′ = [6, 4 −5] lie in two different periods, each of length 6. Whenever this happens each member of
the period with member F has its associate in the period with member F ′. This is Proposition 3.7 of [1],
p. 25. If F1 is the right neighbour of a reduced form F then A1 = R(t)⊤ AR(t). With the definition
A2 := M(t)⊤ A1 M (exchange of the diagonal elements in A1) it follows that A2 = R⊤(t)A′ R(t)
by analogy. F2, the associate of F1, is therefore reduced and it is the left neighbour in the period of
F ′, seen by using R−1(t) to transform F ′ into F2. Example: D = 136 with F and F ′ as given above.
F1 = [−3, 10, 3] and F2 = [3, 10, −3]. (In [3], art. 187, p. 158, the example for his determinant 79
is used. This corresponds to the discriminant D = 4 · 79 = 312, with six classes of period lengths
[6, 6, 6, 6, 4, 4], each of the two length 4 periods is self-associated, and the length 6 periods come in two
associated pairs.) In this way a period is either self-associated (each of its forms has its associate in the
same period) or a period of some (even) length L has an associated different period of the same length,
i.e., each form of the first period has its associate somewhere in the associated period. In the example
D = 136 the two periods of length 6 are associated, as are the two periods of length 4. In both cases the
order of the associate partners are the same (no mixing). For D = 145 two of the periods of length 6
are associated, but not member by member as one cycles through the period (mixing). The other period
of length 6 is self-associate, like the remaining length 10 period.

With each period of (reduced) forms of length L = 2 l of discriminant D there comes an L-tuple of
integers ~t = (t1, t2, ..., tL) whose entries appear in the matrix R(tj) which transforms Fj−1, in the
period with some fixed starting form F0, into its right neighbour form Fj . It is clear that this t−list is
to be considered as cyclic, i.e., tL+1 = t1, and the starting form is arbitrary. Later on we are interested
in the special period starting with the so called principal form of D, which will be the unique form with
a = 1.

2 Continued fractions and Pell equations

Each form [a, b, c] of discriminant D > 0 is related to a quadratic irrational (mixed surd) called ω =

ω(a, b, c) :=
−b +

√
D

2 a
[1], p. 31. It is the root of the quadratic polynomial F ([a, b, c], [x, 1]) =

a x2 + b x + c with a positive square root. This number has, shown by Lagrange in 1770, a periodic
continued fraction approximation [13], ch. III., §20, p. 65. (See also [1], sect. 3.3 for a short account on
regular (also called simple) continued fractions.) If two forms F (A, ~x) and F (A′, ~x′) are equivalent, i.e.,
A′ = M−1,⊤AM−1 and ~x′ = M ~x with DetM = +1 and M = Matrix([[α, β], [γ, δ]]) ∈ SL(2,Z)
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then this irrational number transforms like (see [1], p. 31 where ω is called principal root of the form F )

ω′ =
αω + β

γ ω + δ
α δ − β γ = +1 . (4)

This can be proved by comparing terms proportional to 1 and
√
D on both sides of the equation with

the help of the known transformation laws for a′, b′, c′, which are a′ = δ2 a − δ γ b + γ2 c, b′ =
−2δ β a + (α δ + β γ) b − 2α γ c and c′ = β2 a − αβ b + α2 c. In [13], §17, p. 54, such numbers
ω′ and ω are called equivalent (irrational) numbers (DetM = −1 is also allowed there). This implies
([13], Satz 2.24, p. 55, attributed to J. A. Serret) that two irrational numbers have regular continued
fractions which are identical starting with some partial quotient if and only if they are equivalent. Here
we are dealing with (mixed, not purely) periodic regular continued fractions. For the relation to the Pell
equations of special interest is the irrational number, called ωp which belongs to the so called unique

principal form [1], p. 26, Fp :=
[

1, b, −D− b2

4

]

(b = b(D) will be determined uniquely) which defines

the principle period (or cycle) of which it is an element. The irrational number −ωp belongs to the form

with a sign flip in a and c, i.e., to
[

−1, b, D− b2

4

]

.

Lemma 2: Principal reduced form [1, b, c] of D

The indefinite form Fp =

[

1, b, −D − b2

4

]

of discriminant D is unique and, with f(D) =
⌈√

D
⌉

, it is

given by

b = b(D) =







f(D) - 2 if D and f(D) have the same parity,

f(D) - 1 if D and f(D) have opposite parity.
(5)

Later these two cases will be called case I and case II. See A226134 for these b(D) values for D from
A079896.

Proof: This follows from the definition for a reduced form in the version I) [14]. 0 < b ≤ f(D) and
because 2 |a| = 2 · 1 and |c| ≥ 1 one has f(D) − 2 ≤ b < f(D). Therefore, either b = f(D) − 2 or
b = f(D) − 1. The parities of b and D have to be equal from the definition of D. Therefore, if the parity
of D and f(D) is the same (either even or odd), b has to be f(D)− 2, and in the other case b = f(D)− 1.

Examples for principal forms

D = 5, f(D) = 3 : [1, 1, −1]; D = 28, f(D) = 6 : [1, 4, −3]; D = 20, f(D) = 5 : [1, 4, −1];
D = 13, f(D) = 4 : [1, 3, −1]. They belong to the cases I, I, II and II, respectively.

The corresponding quadratic irrational depends only on D and it will be called ωp(D) =
−b(D) +

√
D

2
,

where b(D) is given in eq. (5) for the two cases I and II.

Lemma 3: |ωp(D)|
For each discriminant D(n) =A079896(n) , n ≥ 0, the quadratic irrational ωp(D(n)) satisfies

1

2
< ωp(D(n)) < 1 if D and f(D) have the same parity, case I ,

0 < ωp(D(n)) <
1

2
if D and f(D) have of opposite parity, case II . (6)

Proof: This follows immediately from the two cases of Lemma 2.

Examples for values of ωp(D)

Case I: ωp(D(8)) = ωp(28) = −2 +
√
7 ≈ 0.645751311 (Maple 13 [9], 10 digits).

Case II: ωp(D(5)) = ωp(20) = −2 +
√
5 = −3 + 2Φ, with the golden section Φ :=

1 +
√
5

2
.

ωp(20) ≈ 0.236067977. Note that < 1,Φ > is the basis for integers in the quadratic number field Q(
√
5).
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Lemma 4: ωp(D) is integer in a certain Q(
√
m )

Define m(n) := sqfp(D(n)) =A226693(n) as the square-free part of D(n) =A079896(n), n ≥ 0. See
A226693. Then ωp(D(n)) ∈ Z(

√

m(n) ), the ring of integers of the real quadratic field Q(
√

m(n) )

with basis < 1, ω(n) >, where ω(n) =
√

m(n) if m(n) ≡ 2, or 3 (mod 4), and ω(n) =
1 +

√

m(n)

2
if

m(n) ≡ 1 (mod 4).

In [1] one finds in ch. 6, pp. 87-106 an account on quadratic number fields. For the basis of the ring of
integers in Q(

√
m ) (m is called there d) see Proposition 6.6. on p. 91. The ring of integers Z(

√
m ) in

Q(
√
m ) is there, on p. 92, called O(

√
d ). For more on this subject see, e.g.,Hardy and Wright [5].

Proof: The square-free part of D =A079896(n) is called m(n) =A226693(n) or sometimes (by abuse
of notation) m(D).
i) Consider first the case D ≡ 0 (mod 4), not a square. This is the sequence 4∗A000037. The square-free
part m(D) of a D = 4 k, k = 1, 2, ..., not a square, coincides with the square-free part of k, not a
square, which is found as sequence A002734. D and b have always the same parity, which is here even,

hence b = 2 b′ and ωp(D) =
−2 b′ + 2 a

√

m(D)

2
with the positive integer a :=

k(n)

sqfp(k(n))
. This is

then an element of Z(
√

m(D) ), also if m(D) ≡ 1 (mod 4), which can happen, e.g., for D = 20 and
m(D) = 5. The coefficients in the basis < 1, ω(n) > are (−(b′ + a), 2 a) if m(n) ≡ 1 (mod 4) and
(−b′, a) if m(n) ≡ 2 or 3 (mod 4).
ii) If D ≡ 1 (mod 4) then b = 2 b′ + 1 (odd with D). The Ds are shown in A077425 and their
square-free parts m in A226165. We will show that m ≡ 1 (mod 4), and then the basis element is

ω(n) =
1 +

√

m(n)

2
. The quadratic irrational ωp(D) turns out to be of the form

−(2 b′ + 1) + a
√
m

2
,

with integer b′ and an odd positive integer a = 2 a′ + 1. This will then produce the Z(
√
m ) integer

ωp(D) = −(a′ + b′ + 1) + aω(
√
m ). The proof that m ≡ 1 (mod 4), follows from the prime number

factorization of the odd D. Because it is 1 (mod 4) the number of odd primes of the type 3 (mod 4)
with an odd exponent has to be even (including 0). Otherwise the mod 4 arithmetic would produce a
3 instead of a 1. Then m(D) = sqfp(D) will have, besides possible factors of distinct primes of the
type 1 (mod 4), only an even number of distinct type 3 (mod 4) primes, therefore, m(D) ≡ 1 (mod 4).

For the following topic of periods and continued fractions one will need the result that the L−tuple of
t-values of the R matrices for the principal period alternates in sign, starting negative.

Lemma 5: ~tp(D) entries for principal period alternate

The L−tuple for the principal period ~tp(D) = (tp,1, tp,2, ..., tp,L(D)) satisfies tp,1 < 0, tp,2 > 0, ...,
tp,L(D)−1 < 0, tp,L(D) > 0 .

Example: ~tp(17) = (−1, 1, −3, 1, −1, 3). L(17) = 2 · 3 = 6.

Proof: We omit the index p. Remember that all forms of a period are reduced. That t1 < 0 is clear
from Lemma 1 because the principal reduced form Fp(D) = F0(D) has negative c-component. Therefore
the t1-value of the matric R(t1) leading to the half-reduced right neighbour F1(D) has to be negative
too, because of Lemma 1. The a component of F1(D) is the (negative) c component of F0(D), hence its
c-component has to be positive due to the first statement in eq. (3), and t2 has to be positive due to
Lemma 1, etc. This shows again, that the length of the period L is even, because FL(D) = F0(D), hence
tL+1 is again negative, and tL has to be positive.

The main topic of these notes is now the direct relationship between the principal period of length L(D) =
2 l(D) of discriminant D in the indefinite case and the regular continued fraction (r.c.f.) expansion of
ωp(D). Here we depart slightly from [1], sect. 3.3., p. 35ff., which starts (on p. 40) with the irrational

for the non-reduced forms

(

1, 0, −D

4

)

for even D, and

(

1, 1,
1 − D

4

)

for odd D. We start with the
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(reduced) principal form Fp of D and its irrational ωp(D). The identification of the partial quotients of
the r.c.f. and the real numbers Zj in the continued fraction algorithm will also differ from [1].

The principal period of indefinite discriminant D, starting with the principal form Fp(D) = F0(D),
is obtained from applying repeatedly the equivalence transformation matrix R(tj) (see above for the
definition of this matrix) with the uniquely defined tj . One can end this process when one reaches the
original form after L steps, when FL(D) = F0(D).

Fp(D) = F0(D)
R(t1)∼ F1(D)

R(t2)∼ F2(D) · · · FL−1(D)
R(tL)∼ FL(D) = F0(D) . (7)

The quadratic irrational ωj(D) corresponding to the forms Fj(D), for j = 1, 2, ..., L, L = 2 l, is obtained
from ωj−1(D) like in eq. (4) with M = R−1(tj). Here ω0(D) = ωp(D) . This corresponding chain of
relations is denotes as follows.

ωp(D) = ω0(D)
R−1(t1)∼ ω1(D)

R−1(t2)∼ ω2(D) · · · ωL−1(D)
R−1(tL)∼ ωL(D) = ω0(D) . (8)

Because R−1(tj) = Matrix([[t, 1], [−1, 0]]) one has

− ωj(D) = tj +
1

ωj−1(D)
, j = 1, 2, ..., L(D), L = 2 l(D) . (9)

Example: Chain of irrationals for D = 28

The principal period is [1, 4, −3], [−3, 2, 2], [2, 2, −3], [−3, 4, 1]. L(28) = 4, and the t−tuple is ~t(28) =
(−1, 1, −1, 4). The quadratic irrationals are

ωp(28) = ω0(28) = −2 +
√
7, ω1(28) =

1 −
√
7

3
, ω2(28) =

−1 +
√
7

2
, ω3(28) =

2 −
√
7

3
. (10)

Note that only ωp(D) has been proven to be an integer in Q(
√

m(D) ).

Now the connection to the r.c.f. algorithm for ωp(D) becomes clear, because the algorithm for the
periodic r.c.f. ωp(D) = [0, d1, d2, ..., dk(D)] (we always use the primitive period of length k(D), the
smallest sequence of positive integers dj needed for the period, not multiples of this sequence). We
omitted the arguments D for the partial quotients dj . If one writes ωp(D) = [0, d1, d2, ..., dn−1,Xn], for
n = 1, 2, ... (using the notation of [1], sect. 3.3) we have for n = 1 , ωp = [0,X1] = 1/X1 := Z0 and
the following recurrence.

Regular continued fraction recurrence for Zj and determination of dj

Xj =
1

Zj−1
, Zj =

1

Zj−1
−

⌊

1

Zj−1

⌋

, Z0 = ωp(D) = ω0(D) and dj =

⌊

1

Zj−1

⌋

. (11)

Example: ωp(17) = Z0 = −3+
√
17

2 ≈ 0.561552813. d1 =

⌊

1

Z0

⌋

= 1. Z1 ≈ .780776406, d2 =
⌊

1

Z1

⌋

= 1. Z2 ≈ .280776407, d3 =

⌊

1

Z1

⌋

= 3, etc. Here one will find the primitive r.c.f. period

(1, 1, 3). Note that one needs appropriate precision for the real numbers Zj if one wants to compute
large indexed djs correctly. Observe that the primitive period length 3 coincides here with one half of
the length L = 6 of the principal period for D = 17. This is not always the case. See the later Lemma
6.

This Zj-recurrence −Zj = dj − 1

Zj−1
can obviously be mapped to the one for the periodic ωj(D) chain,

eq. (9), by identifying

ωj(D) = (−1)j Zj(D) , tj = (−1)j dj , j = 0, 1, ... (12)

6



Note that the djs are indeed positive due to Lemma 5.

In order to compare the even length L = 2 l of the principal period of D with the length of the
primitive period of the r.c.f. for ωp(D), called k(D) above, one observes that the reduced form
F̂p(D) = [−1, b(D), −c(D)] corresponding to Fp(D) = [1, b(D), c(D)] ( via sign flip of the outer
components of Fp(D)) has the associated quadratic irrational ω̂p(D) = −ωp(D) due to a = −1, and
because also the c sign has been changed, D remains invariant. Then it is clear that whenever this form
F̂p(D) appears in the principal period then the pattern of t values in the periodic ωj-chain has to repeat
with opposite signs, and this also happens in the principal period of forms. Therefore in this case F̂p(D)
will appear at one position after the middle of the period, i.e., FL/2= l(D) = F̂p(D). We state this as a
Lemma.

Lemma 6: Case F̂p(D) in the principal period

If F̂p(D) = [−1, b(D), −c(D)] is a member of the principal period of D of length L(D) = 2 l(D)
which starts with the principal form Fp(D) = [1, b(D), c(D)] = F0(D) then F̂p(D) = FL/2, and
tL(D)/2+k(D) = −tk for k = 1, ..., L(D)/2.

It is clear that in the case when F̂p(D) is in the principal period (together with Fp(D)) then the r.c.f.

recurrence corresponding to the ωj chain, will produce the djs of the primitive period already for j =
1, 2 ..., l, l = L

2 . In this case the length of the primitive period of the r.c.f. ωp(D), called k(D), equals l.

If, on the other hand, F̂p(D) is not a member of the principal period then one has to consider the whole
ωp(D) chain of even length L to obtain the primitive period of the r.c.f. for ωp(D). The length L/2 of
the principal period of D(n) is found under A226166(n), n ≥ 0.

The connection to the solvability of the Pell eqs. x2 − Dy2 = +4 for all indefinite discriminants
D follows from its connection to so-called automorphs [1], sect. 3.2 (or [14], p. 106 , where this is
called automorphic substitution). These are (nontrivial) equivalence transformations which transform
a form F (A, ~x) into itself: F (A′, ~x′) = F (A, ~x), or F ′(D) = F (D) for short. Such a transformation
exists certainly for the reduced principal form, because FL(D) = F0(D) = Fp(D). The corresponding
transformation matrix is RL(D) := R(t1) · R(t2) · · · R(tL) (we omitted the argument D for the tjs).
E.g., D = 17, L(17) = 6, ~t(17) = (−1, 1,−3, 1,−1, 3) with R6 = Matrix([[−9,−32], [−16,−57]]) (the
theorem on the determinant of products of matrices ensures that DetR6 = +1).

Under an automorph the quadratic irrational transforms also into itself: ω′ = ω. We follow [1], pp. 31,
32. Due to eq. (4) this leads to the quadratic eq. γ ω2 + (δ − α)ω − β = 0. Because ω is a solution of
the eq. aω2 + b ω + c = 0, and the form F is supposed to be primitive, there exits an integer k such
that γ = k a, δ − α = k b and −β = k c. This implies for Dk2 = (b2 − 4 a c) k2 = (δ − α)2 + 4 γ β,
or, if also α δ − γ β = +1 is used,

(α + δ)2 − D
(γ

a

)2
= +4 . (13)

This is how a solution for the Pell +4 equation is guaranteed for each indefinite discriminant D and for
each automorph M of some form of D via eq. (4) with ω′ = ω. We will take the principal period of D
which has the automorphic matrix RL(D). This matrix has a simple structure, as shown in [14], p. 117,
due to R(t) = Matrix([[0,−1], [1, t]]).

Lemma 7: Rn(~t) matrix [14]

Rn(~t ) := R(t1) · R(t2) · · · R(tn) =

(

rn−1 rn
sn−1 sn

)

, n = 1, 2, ... , (14)

where {rn} and {sn} satisfy the three term recurrences

rn = tn rn−1 − rn−2 , with the inputs r−1 = 1, r0 = 0 ,

sn = tn rn−1 − sn−2 , with the inputs s−1 = 0, s0 = 1 . (15)
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Proof: The inputs fit for R1(~t ) = R(t1) because r1 = −1 and s1 = t1. The recurrence Rn(~t ) =
R(tn) · Rn−1(~t ), for n ≥ 2, leads then, with the Ansatz eq. (14), to the recurrences of eq. (15).

Note: Such three term recurrences have a combinatorial interpretation in terms of so called Morse code
polynomials. See [4], p. 302, on Euler’s continuants and Morse code, and a comment under A084950.

For a discussion of the Pell +4 equation and the relation to automorphic substitutions see also [14], §32,
p. 121ff. There the important result is given (Satz 83. p. 120) that each automorphic substitution

matrix M for an indefinite form F of discriminant D, F
M∼ F , is of the form M = ±(RL(D))k, with

some integer k.

This leads now to the fundamental solutions of the Pell +4 equation from eq, (13) because the entries of
the Rn matrix are related to the convergents of r.c.f.s, called in [1], p. 35, Pn and Qn for the numerator

and denominator, respectively. Here we use the nth convergent of the r.c.f. [0, d1, ..., dn] =
Pn

Qn
, (i.e.,

Buell’s ajs are our djs, and d0 = 0).

Pn = dn Pn−1 + Pn−2 , with the inputs P−1 = 1, P0 = 0 ,

Qn = dnQn−1 + Qn−2 , with the inputs Q−1 = 0, Q0 = 1 . (16)

Lemma 8: Identification of Pn and Qn from rn and sn

With the imaginary unit i =
√
−1 one has

Pn = in (n+1) rn , Qn = in (n+1) sn , n ≥ 1 . (17)

Proof: Elementary, by comparing eq. (16) with eq. (15).

2.1 Solutions of the Pell +4 equations
The matrix M used in eq. (4) with ω′ = ω = ωp(D) is now R−1

L (~t ) for the principal period of D.
L = L(D) is the length of the principal period, and the matrix elements in eq. (4) are α = sL,
δ = rL−1, β = −rL and γ = −sL−1. Because for the principal form a = 1 we have the following
proposition:

Proposition 1: Fundamental positive solution of the Pell +4 equation for each D

For each discriminant D = D(n) =A079896(n) of indefinite binary quadratic forms the fundamental
positive solution (X(D), Y (D)) of the Pell equation x2 − Dy2 = +4 is, with L(D) = 2 l(D) the length
of the principal period of D,

X(D) = | sL(D) + rL(D)−1 | = Q2 l(D) + P2 l(D)−1 ,

Y (D) = | sL(D)−1 | = Q2 l(D)−1 , (18)

where Pn and Qn are defined by the three term recurrences eq. (16) in terms of the partial quotients dj
of the r.c.f. ωp(D).

Proof: In eq. (13) α+ δ = (sL(D) + rL(D)−1) = (−1)l(D) (2 l(D)+1) (Q2 l(D) + P2 l(D)−1) from eq. (17).
We are taking the positive solution forX(D), hence the first assertion follows. Similarly, γ = −sL(D)−1 =

−(−1)l(D) (2 l(D)−1) Q2 l(D)−1, hence the positive value of the second assertion is obtained. The claim is that
this is also the solution with the smallest positive values for Y (then also X). Here we can use proposition
83 (Satz 83) of [14] and the connection between the Pell +4 equation and the automorphs. Application
of the (proper) automorphs Rk

L(D), with positive or negative k values means to consider non-primitive

principal periods, and the Y = | γ | element of this matrix product is always |r|k|L(D)| = P|k|L(D). But
the {Pn} (and {Qn}) sequences are (not necessary strictly) monotone (from their recurrences). Thus the
k = 1 case provides the solution with the smallest positive Y -value.

See Table 2 for the fundamental solutions (X(D(n)), Y (D(n)), for these Pell +4 equations, for D(n) =
A079896(n), n = 0, 1, ..., 40.
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Example: Fundamental solution of the Pell +4 equation for D = 17

The first convergents of the r.c.f. for ωp(17) = −3+
√
17

2 for n = 0, 1 ..., 6 are obtained from
[0, 1, 1, 4, 5, 9, 32] for P and [1, 1, 2, 7, 9, 16, 57] for Q. (X(17), Y (17)) = (57 + 9, 16) = (66, 16) =
2 ∗ (33, 8) which is an improper fundamental solution, obtained from the positive proper solution of the
Pell +1 equation for D = 17 which is (33, 8). The proper (non-negative) fundamental solution is, of
course, (0, 1) (note that gcd(0, n) = n). Similarly, the improper (non-negative) fundamental solution of
the Pell +4 equation is, of course (2, 0). There is no proper fundamental solution for D = 17. See also
[8].

All other positive solutions of the Pell +4 equation can be obtained from the fundamental posi-
tive one in the following way (see [14], eq. (149), p. 123). Positive powers of the inverse au-
tomorph R−1

L(D) are associated with these solutions, playing the rôle of M in eq.(4) for ω′ = ω.

Because of Det
(

R−1
L(D)

)k
= +1 (form the product theorem for Det) one finds the recurrence

(

R−1
L(D)

)k
+

(

R−1
L(D)

)k−2
=

(

R−1
L(D)

)k−1
·
(

R−1
L(D) + RL(D)

)

=
(

R−1
L(D)

)k−1
· 12 (sL(D) + rL(D)−1).

Because from eq. (17) one finds (we omit here the arguments D, and L = 2 l) sL + rL−1 = (−1)l X and
αk + δk = sk L + rk L−1 = (−1)k l xk with the positive xk = Qk L + Pk L−1, the recurrence (−1)k l xk =
(−1)l X (−1)(k−1) l xk−1 − (−1)(k−2) l xk−2 follows. Similarly, for γk = −skL−1 = −(−1)k l Qk L−1 and
yk = Qk L−1 one has −(−1)k l yk = (−1)l X (−)(−1)(k−1) l yk−1 − (−)(−1)(k−2) l yk−2. After adjust-
ing the inputs with (x0, y0) = (2, 0) (the trivial improper solution) and (x1, y1) = (X, Y ) (counting
backwards to find (x1, y1)) this results in the following proposition.

Proposition 2: All positive solutions of x2 + Dy2 = +4 [14]

xk(D) = X(D)xk−1(D) − xk−2(D) , k ≥ 1, x−1(D) = X(D), x0(D) = 2 ,

yk(D) = X(D) yk−1(D) − yk−2(D) , k ≥ 1, y−1(D) = −Y (D), y0(D) = 0 . (19)

The positive solutions are (xk(D), yk(D)), k ≥ 1.

This is related to Chebyshev S− and T−polynomials (for their coefficient table see A049310) in the
following way.

xk(D) = 2Sk(X(D)) − X(D)Sk−1(X(D)), k ≥ 1 ,

= Sk−1(X(D)) − Sk−2(X(D)) = 2Tk

(

X(D)

2

)

yk(D) = Y (D)Sk−1(X(D)), k ≥ 1 . (20)

Here Tk(x) is a Chebyshev T−polynomial (see A053120 for the coefficients).

Note that proper and improper fundamental solutions may appear among these pair of sequences
(xk(D), yk(D)), E.g., D = 5 has improper solutions generated from (2, 0), as well as proper ones
generated from two different fundamental proper solutions (3, 1) and (7, 3). D = 12 has the positive
solutions (4, 1), (14, 4), (52, 15), (194, 56), ... (2*A001075 and A001353) alternating between proper and
improper solutions.

2.2 Solution of the Pell −4 equations
Solutions of the Pell −4 equation are related to equivalence transformation matrices M which yield in
eq. (4) ω′ = −ω. This is because then the quadratic equation becomes γ ω2 + (δ + α)ω + β = 0.
Because aω2 + b ω + c = 0, with gcd(a, b, c) = 1, one has now γ = k a, δ − α = k b and β = k c.
This implies for Dk2 = (b2 − 4 a c) k2 = (δ + α)2 − 4 γ β, or, if also α δ − γ β = +1 is used,

(α − δ)2 − D
(γ

a

)2
= −4 . (21)
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If ω(D) is the quadratic irrational for the form F = [a, b, c] of discriminant D then −ω(D) belongs
to the form F̂ = [−a, b, −c] which we have met above. Because D has to stay invariant, this is the
only way to produce this sign flip in ω. We refrain from giving the general equivalence transformation

which belongs to F
M∼ F̂ . For those D for which F̂p is in the principal period it is clear from Lemma

6 that this matrix is RL(D)/2 = Rl(D). From its inverse one can read off the fundamental solution

X̃(D) = |α − δ| = |sl(D) − rl(D)−1| = Ql(D) − (−1)l(D) Pl(D)−1 (because from the recurrences (16)

follows by induction Qn ≥ Pn ≥ Pn−1, n ≥ 0). Similarly Ỹ (D) = | − sl(D)−1| = Ql(D)−1 is the
smallest positive integer solution. (See the discussion on fundamental solutions given for the Pell +4 case
which applies here mutatis mutandis). This leads to the following proposition.

Proposition 3: Fundamental positive integer solution of the Pell −4 equation for specific D

For each discriminant D = D(n) =A079896(n) of indefinite binary quadratic forms for which the form
F̂p = [−1, b(D), −c(D)] is a member of the fundamental period starting with Fp = [1, b(D), c(D)] the
fundamental positive solution (X̃(D), Ỹ (D)) of the Pell equation x2 −Dy2 = −4 is, with L(D) = 2 l(D)
the length of the principal period of D,

X̃(D) = Ql(D) − (−1)l(D) Pl(D)−1 ,

Ỹ (D) = Ql(D)−1 , (22)

where Pn and Qn are defined by the three term recurrences eq. (16).

Again, the general positive integer solutions of the Pell −4 equation can be found from
(

X̃(D), Ỹ (D)
)

and also X(D) from the Pell +4 case, by application of positive integer powers k of the inverse matrix

R−1
L(D). For the resulting three term recurrences, using the above given recurrence for

(

R−1
L(D)

)k
, we need

besides the inputs x̃1 = X̃ and ỹ1 = Ỹ the one for x̃0 and ỹ0. Here we have to take the solution (−X̃, Ỹ ),
because this is the next smallest solution with nonnegative Y (there is, of course, no solution with Ỹ = 0).
Again, the inputs (x̃−1, ỹ−1) are computed backwards and become (−X̃ (X + 1), Ỹ (X − 1)). This leads
us to

Proposition 4: All positive integer solutions of the Pell −4 equation for specific D

For each discriminant D = D(n) =A079896(n) of indefinite binary quadratic forms for which the form
F̂p = [−1, b(D), −c(D)] is a member of the fundamental period starting with Fp = [1, b(D), c(D)] the
positive integer solutions of x2 − Dy2 = −4 are

x̃k(D) = X(D) x̃k−1(D) − x̃k−2(D) , k ≥ 1, x̃−1(D) = −X̃ (X + 1), x̃0(D) = −X̃ ,

ỹk(D) = X(D) ỹk−1(D) − ỹk−2(D) , k ≥ 1, ỹ−1(D) = Ỹ (X − 1), ỹ0(D) = Ỹ . (23)

For these D values 5, 8, 13, 17, 20, 29, 37, 40, 41, ..., found under A226696, the positive solutions are
(x̃n(D), ỹn(D)), n ≥ 1.

This is related to Chebyshev S−polynomials in the following way.

x̃k(D) = X̃(D) (−Sk(X(D)) + (X(D) + 1)Sk−1(X(D)))

= X̃(D) (Sk−1(X(D)) + Sk−2(X(D))) , k ≥ 1 ,

ỹk(D) = Ỹ (D) (Sk(X(D)) − (X(D) − 1)Sk−1(X(D)))

= Ỹ (D) (Sk−1(X(D)) − Sk−2(X(D))) k ≥ 1 . (24)

The pre-factors show, that the Pell −4 equation is solved with
(

X̃(D) x̃′k(D), Ỹ (D) ỹ′k(D)
)

(where

x̃′k(D) and ỹ′k(D) can be read off eq. (24)), and whenever X̃(D) and Ỹ (D) are even, one actu-

ally solves the Pell −1 equation for this D with (
X̃(D)

2
x̃′k(D),

Ỹ (D)

2
ỹ′k(D)), k = 1. See D =

17, 37, 41, 65, 73, 89, 97, 101, ...
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Again, proper and improper fundamental solutions may appear among these pair of sequences
(x̃k(D), ỹk(D)), E.g., D = 5: the pairs come from three sources, one proper fundamen-
tal (positive) solution (1, 1) with the proper descendants (29, 13), (521, 233), (9349, 4181), ..., an-
other proper fundamental solution (11, 5) with descendants (199, 89), (3571, 1597), ... (here (1, −1)
with non-positive entries belongs), and the improper fundamental solution (4, 2) with descen-
dants (76, 34), (1364, 610), (24476, 10946), .... Altogether this produces the (x̃k(5), ỹk(5)) sequences
(A002878(k − 1), A001519(k)), k ≥ 1.

See Table 2 for the fundamental solutions
(

X̃(D(n)), Ỹ (D(n)
)

, for these Pell −4 equations, for D(n) =

A079896(n), n = 0, 1, ..., 40.

Note: Another approach to find all positive solutions of the Pell equations is given in [13], §27, pp. 92-95
and [11], ch. VI, 58., pp. 204-212.

3 Fundamental units in the number field Q(
√
m )

For this topic see besides [1], sect. 6.2, pp. 89-93, also Hardy-Wright, sect. 14.4, p. 207ff., Hasse [6] and
also [15], [16] and the program [10].

The units in Q(
√
m ), m 6= 1, square-free (see A005117), are the integers which divide 1: ε is a unit if

and only if ε ∈ Z(
√
m ) and there exists a γ ∈ Z(

√
m ) such that 1 = ε γ. I.e., ε has in the ring Z(

√
m )

a (multiplicative) inverse ε−1 = γ. The units form a (multiplicative) commutative (Abelian) group E.
A subgroup of order 2 is the cyclic group C2 = {−1,+1} formed from the only units of Q. These are

called trivial units. For an element α = a+ b
√
m

2 ∈ Q(
√
m ) the norm N is defined as N(α) := αα with

α = a− b
√
m

2 , i.e., N(α) = a2 − b2 m
4 . It satisfies N(αβ) = N(α)N(β) (multiplicativity) and vanishes

precisely for α = 0. This norm can also be negative. The trace S (from Spur) is S(α) := α + α = a.
Integers in Q(

√
m ) (i.e., elements of Z(

√
m )) are the elements α which satisfy N(α) ∈ Z and S(α) ∈ Z

(i.e., the monic polynomial which has a root α has coefficients from Z; it is an integer monic polynomial).

If one uses for Z(
√
m ) the basis < 1, ω >, with ω =

1 +
√
m

2
if m ≡ 1 (mod 4) and ω =

√
m if

m ≡ 2 or 3 (mod 4) (note the different definition of δ in [1], p. 92), then an integer is written as
α = x 1 + y ω, with x, y ∈ Z (we omit the argument m for ω and also the basis element 1 later on). The
relation to a, b is a = 2x + y and b = y (i.e., a ± b ≡ 0 (mod 2)), in the first case, and a = 2x, b = 2 y

in the second case. ω =
1 − √

m

2
resp. −√

m for the two cases. This means that ω = 1 − ω or ω = −ω

if m ≡ 1 (mod 4) or m ≡ 2 or 3 (mod 4) , respectively. Also ω + ω = 1 or 0 and ω − ω =
√
m or 2

√
m

for these two cases. Because with a unit ε = x + y ω, with x and y rational integers (i.e., from Z), one
finds

ε−1 =
1

x + y ω
=

1

N(ε)
(x + y ω) =

1

N(ε)







(x + y) − y ω if m ≡ 1 (mod 4) ,

x − y ω if m ≡ 2 or 3 (mod 4) .
(25)

This shows that ε is a unit of Q(
√
m ) if and only if it is from Z(

√
m ) and N(ε) = ±1 (ε−1 ∈ Z(

√
m )).

The non trivial units come in quadruples ε, ε−1, −ε, −ε−1 if N(ε) = +1 and ε, −ε−1, −ε, ε−1 if N(ε) =
−1. Uniqueness within each quadruple is achieved by demanding ε > 1 (the order from R is used here).
See [6], p. 287, for a graphical interpretation using right angled hyperbolas for N(ε) = ±1.

Using the explicit form of N(ε) this norm requirement becomes for ε = x + y ω, x, y ∈ Z,

(2x+ y)2 − my2 = ±4 if m ≡ 1 (mod 4) , (26)

x2 − my2 = ±1 if m ≡ 2 or 3 (mod 4) . (27)

The above given relation between a, b and x, y shows that in order to have an integer ε =
a + b

√
m

2
one needs a − b ≡ 0 (mod 2) (a, b of the same parity) if m ≡ 1 (mod 4), and a as well as b even if
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m ≡ 2 or 3 (mod 4). This representation of ε complicates the Pell issue and we will not use a and b
here.

Sometimes, like in [6], one uses instead of m the discriminant d = d(1, ω) := (DetMatrix([[1, 1][ω, ω]]))2

= (ω − ω)2 = m if m ≡ 1 (mod 4) or 4m if m ≡ 2 or 3 (mod 4). In this case an ε =
u + v

√
d

2
with

rational integers u, v, and N(ε) = ±1 yields the Pell equations u2 − d v2 = ±4. We will consider here
the above given version.

The fundamental unit ε1 of Q(
√
m ) is defined to be the smallest unit with ε1 > 1 which means the

smallest positive integers 2x + y and y in eq. (26) (note that x may vanish) and x and y in eq. (27),
i.e., the fundamental solutions of the Pell equations. Then all other units are given by ε = (−1)ν εk1
with ν = 0 or 1 and k ∈ Z (e.g., [6], p. 288, VIIIb).

Examples for m = 1 (mod4):

See Table 2 for the fundamental Pell ±4 solutions.

m = 5, the Pell −4 equation has the smallest positive solution, namely (1, 1), i.e., y = 1, x = 0,

therefore ε1(5) = ω(5), which is the golden section Φ =
1 +

√
5

2
.

m = 13, the Pell −4 equation has the smallest positive solution, namely the improper (3, 1), i.e.,

y = 1, x = 1, therefore ε1(13) = 1 + ω(13), which is
3 +

√
13

2
.

m = 17, the Pell −4 equation has the smallest positive solution, namely the improper (8, 2), i.e.,
y = 2, x = 3, therefore ε1(17) = 3 + 2ω(17), which is 4 +

√
17.

m = 21, the Pell +4 equation has the fundamental solution (5, 1), There is no solution of the Pell −4

equation. I.e., y = 1, x = 2, therefore ε1(21) = 2 + ω(21), which is
5 +

√
21

2
.

m = 29, the smallest fundamental solution is (5, 1), coming from the Pell −4 equation. I.e., y = 1, x =

2, therefore ε1(29) = 2 + ω(29), which is
5 +

√
29

2
.

m = 33, the Pell +4 equation has the improper fundamental solution (46, 8), There is no solution of
the Pell −4 equation. I.e., y = 8, x = 19, therefore ε1(33) = 19 + 8ω(33), which is 23 + 4

√
33.

Examples for m = 2 (mod4):

In this case there is, of course, no discriminant D = m, but such m values appear as square-free parts
of certain Ds. Here one uses the known facts about the ±1 Pell equations.

m = 2, the smallest fundamental solution is (1, 1) coming from the Pell −1 equation (or from the
improper Pell −4 solution (2, 2) divided by 2). I.e., x = 1, y = 1, therefore ε1(2) = 1 + ω(2), which
is 1 +

√
2.

m = 6, the smallest fundamental solution is (5, 2) coming from the Pell +1 equation (or from the
improper Pell +4 solution (10, 4) divided by 2). There is no solution of the Pell −1 equation (also none
of the −4 equation). Therefore ε1(6) = 5 + 2

√
6.

m = 10, the smallest fundamental solution is (3, 1) coming from the Pell −1 equation (or from the
improper Pell −4 solution (6, 2) divided by 2). Therefore ε1(10) = 3 +

√
10.

m = 14, the smallest fundamental solution is (15, 4) coming from the Pell +1 equation (or from the
improper Pell +4 solution (30, 8) divided by 2). There is no solution of the Pell −1 equation (also none
of the −4 equation). Therefore ε1(14) = 15 + 4

√
14.

m = 22, the smallest fundamental solution is (197, 42) coming from the Pell +1 equation (or from the
improper Pell +4 solution (394, 84) divided by 2). There is no solution of the Pell −1 equation (also
none of the −4 equation). Therefore ε1(22) = 197 + 42

√
22.
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Examples for m = 3 (mod4):

The same remark as above for the m = 2 (mod 4) case applies here as well.

m = 3, the smallest fundamental solution is (2, 1) coming from the Pell +1 equation (there are no
solutions for the −1 case). Therefore, ε1(3) = 2 +

√
3.

m = 7, the smallest fundamental solution is (8, 3) coming from the Pell +1 equation (there are no
solutions for the −1 case). Therefore, ε1(7) = 8 + 3

√
7.

m = 11, the smallest fundamental solution is (10, 3) coming from the Pell +1 equation (there are no
solutions for the −1 case). Therefore, ε1(11) = 10 + 3

√
11.

m = 15, the smallest fundamental solution is (4, 1) coming from the Pell +1 equation (there are no
solutions for the −1 case). Therefore, ε1(15) = 4 +

√
15.

m = 19, the smallest fundamental solution is (170, 39) coming from the Pell +1 equation (there are no
solutions for the −1 case). Therefore, ε1(19) = 170 + 39

√
19.

m = 23, the smallest fundamental solution is (24, 5) coming from the Pell +1 equation (there are no
solutions for the −1 case). Therefore, ε1(23) = 24 + 5

√
23.

m = 31, the smallest fundamental solution is (1520, 273) coming from the Pell +1 equation (there are
no solutions for the −1 case). Therefore, ε1(31) = 1520 + 273

√
31.
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J. von Oettingen, Hrsg. H. Weber), Engelmann, Leipzig 1898 (Ostwald’s Klassiker der exakten
Wissenschaften Nr. 103).

[8] W. Lang, Binary Quadratic Forms (indefinite case), an on-line program,

http://www.itp.kit.edu/~wl/BinQuadForm.html .

[9] MapleTM , http://www.maplesoft.com/.

[10] K. Matthews, Finding the fundamental unit of a real quadratic field (on-line program)
http://www.numbertheory.org/php/unit.html .

[11] T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

13

http://www.itp.kit.edu/~wl/BinQuadForm.html
http://www.maplesoft.com/
http://www.numbertheory.org/php/unit.html


[12] The On-Line Encyclopedia of Integer SequencesTM , published electronically at http://oeis.org.
2010.

[13] O. Perron, Die Lehre von den Kettenbrüchen, Band I, Teubner, Stuttgart, 1954.
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Table legends
Table 1

Discriminant D = D(n) = A079896(n), n = 0, 1, ..., 50. f = f(D(n)) =
⌊

√

D(n)
⌋

. I indicates

that D and f have the same parity, II indicates that D and f have opposite parity. m = m(n) =
sqfp(D(n)) = A226693(n), the square-free part of D(n). Fp is the principal form of D(n). The quadratic
irrational associated to Fp is ωp, which is given in the basis < 1, ω(m(n)) > and in a decimal approxi-
mation. See also the fourth column in Table 2 where its explicit form is given. Pell −4 and +4 indicates
which of the two types of Pell equations have solutions. r.c.f. gives the periodic regular continued frac-
tions, where overlining marks the (primitive) period. Finally, ~t lists the t-values for the transformations
in the principal period, starting with the principal form Fp for each discriminant D(n), see eq. (7) and
the definition of R(t).

Table 2

Discriminant D = D(n) =A079896(n), n = 0, 1, ..., 40. L = L(D(n)) is the length of the principal
period. ωp is the quadratic irrational associated to the principal form Fp (see Table 1, the sixth column,
and also the next column). The convergents of the periodic regular continued fraction of ωp are in the
column ωp cvgts. The (positive) fundamental solution of the Pell +4 equation with D(n) is given in
column Pell (X, Y ) (see eq. (18), and similarly (X̃, Ỹ ) is the (positive) fundamental solution of the Pell
−4 equation with D(n), if existent (see eq. (22)). no. sol. stands for ’no solution exists’. The A-numbers
[12] for the general positive solutions for both cases are listed in the columns (xk, yk) and (x̃k, ỹk). The
offset for k is here 1.
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Table 1: Principal forms of discriminant D, their irrationals, continued fractions, and Pell equations

n D f I / II m Fp ωp Pell −4, +4 r.c.f. t̃

0 5 3 I 5 [1, 1, −1] (−1, 1), ≈ 0.618033988 −4, +4 [0; 1] (−1, 1)
1 8 3 II 2 [1, 2, −1] (−1, 1), ≈ 0.414213562 −4, +4 [0; 2] (−2, 2)
2 12 4 I 3 [1, 2, −2] (−1, 1), ≈ 0.732050808 +4 [0; 1, 2] (−1, 2)
3 13 4 II 13 [1, 3, −1] (−2, 1), ≈ 0.302775638 −4, +4 [0; 3] (−3, 3)
4 17 5 I 17 [1, 3, −2] (−2, 1), ≈ 0.561552813 −4, +4 [0; 1, 1, 3] (−1, 1, −3, 1, −1, 3)
5 20 5 II 5 [1, 4, −1] (−2, 1), ≈ 0.236067977 −4 + 4 [0; 4] (−4, 4)
6 21 5 I 21 [1, 3, −3] (−2, 1), ≈ 0.791287848 +4 [0; 1, 3] (−1, 3)
7 24 5 II 6 [1, 4, −2] (−2, 1), ≈ 0.449489743 +4 [0; 2, 4] (−2, 4)
8 28 6 I 7 [1, 4, −3] (−2, 1), ≈ 0.645751311 +4 [0; 1, 1, 1, 4] (−1, 1, −1, 4)
9 29 6 II 29 [1, 5, −1] (−3, 1), ≈ 0.192582404 −4, +4 [0; 5] (−5, 5)

10 32 6 I 2 [1, 4, −4] (−2, 2), ≈ 0.828427124 +4 [0; 1, 4] (−1, 4)
11 33 6 II 33 [1, 5, −2] (−3, 1), ≈ 0.372281324 +4 [0; 2, 1, 2, 5] (−2, 1, −2, 5)
12 37 7 I 37 [1, 5, −3] (−3, 1), ≈ 0.541381265 −4, +4 [0; 1, 1, 5] (−1, 1, −5, 1, −1, 5)
13 40 7 II 10 [1, 6, −1] (−3, 1), ≈ 0.162277660 −4, +4 [0; 6] (−6, 6)
14 41 7 I 41 [1, 5, −4] (−3, 1), ≈ 0.701562118 −4, +4 [0; 1, 2, 2, 1, 5] (−1, 2, −2, 1, −5, 1, −1, 2, −1, 5)
15 44 7 II 11 [1, 6, −2] (−3, 1), ≈ 0.316624790 +4 [0; 3, 6] (−3, 6)
16 45 7 I 5 [1, 5, −5] (−4, 3), ≈ 0.854101966 +4 [0; 1, 5] (−1, 5)
17 48 7 II 3 [1, 6, −3] (−3, 2), ≈ 0.464101616 +4 [0; 2, 6] (−2, 6)
18 52 8 I 13 [1, 6, −4] (−3, 1), ≈ 0.605551275 −4, +4 [0; 1, 1, 1, 1, 6] (−1, 1, −1, 1, −6, 1, −1, 1, −1, 6)
19 53 8 II 53 [1, 7, −1] (−4, 1), ≈ 0.140054944 −4, +4 [0; 7] (−7, 7)
20 56 8 I 14 [1, 6, −5] (−3, 1), ≈ 0.741657387 +4 [0; 1, 2, 1, 6] (−1, 2, −1, 6)
21 57 8 II 57 [1, 7, −2] (−4, 1), ≈ 0.274917218 +4 [0; 3, 1, 1, 1, 3, 7] (−3, 1, −1, 1, −3, 7)
22 60 8 I 15 [1, 6, −6] (−3, 1), ≈ 0.872983346 +4 [0; 1, 6] (−1, 6)
23 61 8 II 61 [1, 7, −3] (−4, 1), ≈ 0.405124838 −4, +4 [0; 2, 2, 7] (−2, 2, −7, 2, −2, 7)
24 65 9 I 65 [1, 7, −4] (−4, 1), ≈ 0.531128874 −4, +4 [0; 1, 1, 7] (−1, 1, −7, 1, −1, 7)
25 68 9 II 17 [1, 8, −1] (−4, 1), ≈ 0.123105626 −4, +4 [0; 8] (−8, 8)
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Table 1 (cont’d): Principal forms of discriminant D, their irrationals, continued fractions, and Pell equations

n D f I / II m Fp ωp Pell −4, +4 r.c.f. t̃

26 69 9 I 69 [1, 7, −5] (−4, 1), ≈ 0.653311932 +4 [0; 1, 1, 1, 7] (−1, 1, −1, 7)
27 72 9 II 2 [1, 8, −2] (−4, 3), ≈ 0.242640686 +4 [0; 4, 8] (−4, 8)
28 73 9 I 73 [1, 7, −6] (−4, 1), ≈ 0.772001872 −4, +4 [0; 1, 3, 2, 1, 1, 2, 3, 1, 7] (−1, 3, −2, 1, −1, 2, −3, 1, −7,

1, −3, 2, −1, 1, −2, 3, −1, 7)
29 76 9 II 19 [1, 8, 3] (−4, 1), ≈ 0.358898944 +4 [0; 2, 1, 3, 1, 2, 8] (−2, 1, −3, 1, −2, 8)
30 77 9 I 77 [1, 7, −7] (−4, 1), ≈ 0.887482194 +4 [0; 1, 7] (−1, 7)
31 80 9 II 5 [1, 8, −4] (−4, 2), ≈ 0.472135954 +4 [0; 2, 8] (−2, 8)
32 84 10 I 21 [1, 8, −5] (−4, 1), ≈ 0.582575695 +4 [0; 1, 1, 2, 1, 1, 8] (−1, 1, −2, 1, −1, 8)
33 85 10 II 85 [1, 9, −1] (−5, 1), ≈ 0.109772228 −4, +4 [0; 9] (−9, 9)
34 88 10 I 22 [1, 8, −6] (−4, 1), ≈ 0.690415760 +4 [0; 1, 2, 4, 2, 1, 8] (−1, 2, −4, 2, −1, 8)
35 89 10 II 89 [1, 9, −2] (−5, 1), ≈ 0.216990566 −4, +4 [0; 4, 1, 1, 1, 1, 4, 9] (−4, 1, −1, 1, −1, 4, −9,

4, −1, 1, −1, 1, −4, 9)
36 92 10 I 23 [1, 8, −7] (−4, 1), ≈ 0.795831523 +4 [0; 1, 3, 1, 8] (−1, 3, −1, 8)
37 93 10 II 93 [1, 9, −3] (−5, 1), ≈ 0.321825380 +4 [0; 3, 9] (−3, 9)
38 96 10 I 6 [1, 8, −8] (−4, 2), ≈ 0.898979486 +4 [0; 1, 8] (−1, 8)
39 97 10 II 97 [1, 9, −4] (−5, 1), ≈ 0.424428901 −4, +4 [0; 2, 2, 1, 4, 4, 1, 2, 2, 9] (−2, 2, −1, 4, −4, 1, −2, 2, −9

2, −2, 1, −4, 4, −1, 2, −2, 9)
40 101 11 I 101 [1, 9, −5] (−5, 1), ≈ 0.524937810 −4, +4 [0; 1, 1, 9] (−1, 1, −9, 1, −1, 9)
41 104 11 II 26 [1, 10, −1] (−5, 1), ≈ 0.099019514 −4, +4 [0; 10] (−10, 10)
42 105 11 I 105 [1, 9, −6] (−5, 1), ≈ 0.623475385 +4 [0; 1, 1, 1, 1, 1, 9] (−1, 1, −1, 1, −1, 9)
43 108 11 II 3 [1, 10, −2] (−5, 3), ≈ 0.196152424 +4 [0; 5, 10] (−5, 10)
44 109 11 I 109 [1, 9, −7] (−5, 1), ≈ 0.720153255 −4, +4 [0; 1, 2, 1, 1, 2, 1, 9] (−1, 2, −1, 1, −2, 1, −9,

1, −2, 1, −1, 2, −1, 9)
45 112 11 II 7 [1, 10, −3] (−5, 2), ≈ 0.291502622 +4 [0; 3, 2, 3, 10] (−3, 2, −3, 10)
46 113 11 I 113 [1, 9, −8] (−5, 1), ≈ 0.815072905 −4, +4 [0; 1, 4, 2, 2, 4, 1, 9] (−1, 4, −2, 2, −4, 1, −9,

1, −4, 2, −2, 4, −1, 9)
47 116 11 II 29 [1, 10, −4] (−5, 1), ≈ 0.385164807 −4, +4 [0; 2, 1, 1, 2, 10] (−2, 1, −1, 2, −10,

2, −1, 1, −2, 10)
48 117 11 I 13 [1, 9, −9] (−6, 3), ≈ 0.908326912 +4 [0; 1, 9] (−1, 9)
49 120 11 II 30 [1, 10, −5] (−5, 1), ≈ 0.477225575 +4 [0; 2, 10] (−2, 10)
50 124 12 I 31 [1, 10, −6] (−5, 1), ≈ 0.567764363 +4 [0; 1, 1, 3, 5, 3, 1, 1, 10] (−1, 1, −3, 5, −3, 1, −1, 10)
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Table 2: Discriminant D, L(D), ωp convergents, and Pell ±4 equations

n D L ωp ωp cvgts Pell (X, Y) Pell (X̃, Ỹ) (xk, yk) (x̃k, ỹk)

0 5 2 −1+
√
5

2

[

0
1 ,

1
1 ,

1
2

]

(3, 1) (1, 1) (A005248,A001906) (A002878(k − 1), A001519)

1 8 2 −1 +
√
2

[

0
1 ,

1
2 ,

2
5

]

(6, 2) (2, 1) (2 ·A001541, 2 ·A001109) (2 ·A002315(k − 1), A001653)

2 12 2 −1 +
√
3

[

0
1 ,

1
1 ,

2
3

]

(4, 1) no sol. (2 ·A001075, A001353) no solutions

3 13 2 −3+
√
13

2

[

0
1 ,

1
3 ,

3
10

]

(11, 3) (3, 1) (A057076, 3 ·A004190(k − 1)) (3 ·A097783(k − 1), A078922)

4 17 6 −3+
√
17

2

[

0
1 ,

1
1 ,

1
2 ,

4
7 ,

5
9 ,

9
16 ,

32
57

]

(66, 16) (8, 2) (2 ·A099370, (8 ·A078989(k − 1),
16 ·A097316(k − 1)) 2 ·A078988(k − 1))

5 20 2 −2 +
√
5

[

0
1 ,

1
4 ,

4
17

]

(18, 4) (4, 1) (2 ·A023039, (4 ·A049629(k − 1),
4 ·A049660(k − 1)) A007805(k − 1))

6 21 2 −3+
√
21

2

[

0
1 ,

1
1 ,

3
4

]

(5, 1) no sol. (A003501,A004254) no solution

7 24 2 −2 +
√
6

[

0
1 ,

1
2 ,

4
9

]

(10, 2) no sol. (2 ·A001079, 2 ·A004189) no solution

8 28 4 −2 +
√
7

[

0
1 ,

1
1 ,

1
2 ,

2
3 ,

9
14

]

(16, 3) no sol. (2 ·A001081, 3 ·A077412(k − 1)) no solution

9 29 2 −5+
√
29

2

[

0
1 ,

1
5 ,

5
26

]

(27, 5) (5, 1) (A090248, (5 ·A097834(k − 1),
5 ·A097781(k − 1)) A097835(k-1))

10 32 2 −2 +
√
2

[

0
1 ,

1
1 ,

4
5

]

(6, 1) no sol. (2 ·A001541, A001109) no solution

11 33 4 −5+
√
33

2

[

0
1 ,

1
2 ,

1
3

3
8 ,

16
43

]

(46, 8) no sol. (2 ·A174748(k + 1), no solution
2 ·A174772(k + 1))

12 37 6 −5+
√
37

2

[

0
1 ,

1
1 ,

1
2 ,

6
11 ,

7
13 ,

13
24 ,

72
133

]

(146, 24) (12, 2) (2 ·A174747(k + 1), (12 ·A097729(k − 1),
2 ·A174775(k + 1)) 2 ·A097730(k − 1))

13 40 2 −3 +
√
10

[

0
1 ,

1
6 ,

6
37

]

(38, 6) (6, 1) (2 ·A078986, (6 ·A097314(k − 1),
6 ·A078987(k − 1)) A097315(k − 1))

14 41 10 −5+
√
41

2

[

0
1 ,

1
1 ,

2
3 ,

5
7 ,

7
10 ,

40
57 ,

47
67 , (4098, 640) (64, 10) (2 ·A174752(k + 1), (64 ·A226694(k − 1),

134
191 ,

315
449 ,

449
640 ,

2560
3649

]

2 ·A174778(k + 1)) 10 ·A226695(k − 1))

15 44 2 −3 +
√
11

[

0
1 ,

1
3 ,

6
19

]

(20, 3) no sol. (2 ·A001085, 3 ·A075843) no solution

16 45 2 −5+3
√
5

2

[

0
1 ,

1
3 ,

5
6

]

(7, 1) no sol. (A056854,A004187) no solution

continued
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Table 2 (cont’d): Discriminant D, L(D), ωp convergents, and Pell ±4 equations

n D L ωp ωp cvgts Pell (X, Y) Pell (X̃, Ỹ) (xk, yk) (x̃k, ỹk)

17 48 2 −3 + 2
√
3

[

0
1 ,

1
2 ,

6
13

]

(14, 2) no sol. (2 ·A011943(k + 1), no solution
2 ·A007655(k + 1))

18 52 10 −3 +
√
13

[

0
1 ,

1
1 ,

1
2 ,

2
3 ,

3
5 ,

20
33 ,

23
38 , (1298, 180) (36, 5) (2 ·A114047,A075871) (2 ·A202155,

43
71 ,

66
109 ,

109
180 ,

720
1189

]

A202156)

19 53 2 −7+
√
53

2

[

0
1 ,

1
7 ,

7
50

]

(51, 7) (7, 1) (A099368, (7 ·A097836(k − 1),
7 ·A097837(k − 1)) A097838(k − 1))

20 56 4 −3 +
√
14

[

0
1 ,

1
1 ,

2
3 ,

3
4 ,

20
27

]

(30, 4) no sol. (2 ·A068203, no solution
4 ·A097313(k − 1))

21 57 6 −7+
√
57

2

[

0
1 ,

1
3 ,

1
4 ,

2
7 ,

3
11 ,

11
40 ,

80
291

]

(302, 40) no sol. (2 ·A174759(k + 1) no solution
2 ·A175015(k + 1))

22 60 2 −3 +
√
15

[

0
1 ,

1
1 ,

6
7

]

(8, 1) no sol. (2 ·A001091,A001090) no solution

23 61 6 −7+
√
61

2

[

0
1 ,

1
2 ,

2
5 ,

15
37 ,

32
79 ,

79
195 ,

585
1444

]

(1523, 195) (39, 5) (A226669, (39 ·A266701(k − 1),
3 · 5 · 13 ·A226700) 5 ·A266702(k − 1))

24 65 6 −7+
√
65

2

[

0
1 ,

1
1 ,

1
2 ,

8
15 ,

9
17 ,

17
32 ,

128
241

]

(258, 32) (16, 2) (2 ·A176368(k − 1), (2 ·A097736(k − 1),
2 ·A176369(k − 1)) 16 ·A097735(k − 1))

25 68 2 −4 +
√
17

[

0
1 ,

1
8 ,

8
65

]

(66, 8) (8, 1) (2 ·A099370(k − 1), (8 ·A078989,
8 ·A097316) A078988(k − 1)

26 69 4 −7+
√
69

2

[

0
1 ,

1
1 ,

1
2 ,

2
3 ,

15
23

]

(25, 3) no sol. (A090733, no solution
3 ·A097780(k − 1))

27 72 2 −4 + 3
√
2

[

0
1 ,

1
4 ,

8
33

]

(34, 4) no sol. (2 ·A056771, no solution
4 ·A029547(k − 1))

28 73 18 −7+
√
73

2

[

0
1 ,

1
1 ,

3
4 ,

7
9 ,

10
13 ,

17
22 ,

44
57 , (4562498, 534000) (2136, 250) (2 ·A176382, (23 · 3 · 89 ·A227039(k − 1),

149
193 ,

193
250 ,

1500
1943 ,

1693
2193 ,

6579
8522 , 2 ·A176384(k + 1)) 2 · 53 ·A227040(k − 1))

14851
19237 ,

21430
27759 ,

36281
46996 ,

93992
121751

318257
412249 ,

412249
534000 ,

3204000
4150249

]

29 76 6 −4+
√
19

2

[

0
1 ,

1
2 ,

1
3 ,

4
11 ,

5
14 ,

14
39 ,

117
326

]

(340, 39) no sol. (2 ·A114048(k + 1), no solution
A174765(k + 1))

continued
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Table 2 (cont’d): Discriminant D, L(D), ωp convergents, and Pell ±4 equations

n D L ωp ωp cvgts Pell (X, Y) Pell (X̃, Ỹ) (xk, yk) (x̃k, ỹk)

30 77 2 −7+
√
77

2

[

0
1 ,

1
1 ,

7
8

]

(9, 1) no sol. (A056918, no solution
A018913)

31 80 2 −4 + 2
√
5

[

0
1 ,

1
2 ,

8
17

]

(18, 2) no sol. (2 ·A023039, no solution
2 ·A049660)

32 84 6 −4 +
√
21

[

0
1 ,

1
1 ,

3
5 ,

4
7 ,

7
12 ,

60
103

]

(110, 12) no sol. (2 ·A114049, no solution
A174745(k + 1))

33 85 2 −9+
√
85

2

[

0
1 ,

1
9 ,

9
82

]

(83, 9) (9, 1) (A099373, (9 ·A097840(k − 1),
9 ·A097839) A097841(k − 1)

34 88 6 −4 +
√
22

[

0
1 ,

1
1 ,

9
13 ,

20
29 ,

29
42 ,

252
365

]

(394, 42) no sol. (2 ·A114050(k + 1), no solution
A174766(k + 1))

35 89 14 −9+
√
89

2

[

0
1 ,

1
4 ,

1
5 ,

2
9 ,

3
14 ,

5
23 ,

23
106 , (1000002, 106000) (1000, 106) (2 ·A277110, (2 · 500 ·A227137,

212
977 ,

871
4014 ,

1083
4991 ,

1954
9005 ,

3037
13996 , 2 · 53000 ·A277111) 2 · 53 ·A227138)

4991
23001 ,

23001
106000 ,

212000
977001

36 92 4 −4 +
√
23

[

0
1 ,

1
1 ,

3
4 ,

4
5 ,

35
44

]

(48, 5) no sol. (2 ·A114051, no solution
A174767(k + 1))

37 93 2 −9+
√
93

2

[

0
1 ,

1
3 ,

9
28

]

(29, 3) no sol. (A090251, no solution
3 ·A097782(k + 1))

38 96 2 −4 + 2
√
6

[

0
1 ,

1
1 ,

8
9

]

(10, 1) no sol. (2 ·A001079(k − 1), no solution
A004189)

39 97 18 −9+
√
97

2

[

0
1 ,

1
2 ,

2
5 ,

3
7 ,

14
33 ,

59
139 ,

73
172 , (125619266, 12754704) (11208, 1138) (2 ·A227150(k − 1), (23 · 3 · 467 ·

205
483 ,

483
1138 ,

4552
10725 ,

9587
22588 ,

23726
55901 , 24 · 3 · 467 · 569 · A227274(k − 1),

333131
78489 ,

156978
369857 ,

661225
1557917 ,

818203
1927774 A227151(k − 1)) 2 · 569 ·A227274(k − 1))

2297631
5413465 ,

5413465
12754704 ,

51018816
120205801

]

40 101 6 −4+
√
101

2

[

0
1 ,

1
2 ,

10
19 ,

11
21 ,

21
40 ,

200
381

]

(402, 40) (20, 2) (2 ·A227152(k − 1), (20 ·A097741(k − 1),
40 ·A097740(k − 1)) 2 ·A097742(k − 1))
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