[go: up one dir, main page]

login
A225880
Numbers that can be expressed as the product of largest odd proper divisor and the sum of odd proper divisors.
2
12, 56, 672, 992, 11904, 16256, 55552, 195072, 666624, 910336, 10924032, 16125952, 67100672, 193511424, 805208064, 903053312, 3757637632, 10836639744, 17179738112, 45091651584, 66563866624, 206156857344, 274877382656, 798766399488, 962065334272, 1090788524032
OFFSET
1,1
COMMENTS
The numbers a(n) can be expressed as 2^(m+n+p+...)*(2^m-1)*(2^n-1)*(2^p-1)... with 2^m-1, 2^n-1, 2^p-1 distinct Mersenne primes (A000668(n)). Example: 55552 = 2^6*7*31=2^6*(2^3-1)*(2^5-1).
This sequence is supersequence of A139256.
The number a(n) is in A139256 or a(n) is product of twice even perfect numbers A139256(n). Example: 1090788524032 = 16256*67100672 = (2*8128)*(2*33550336) = A139256(4) * A139256(5).
EXAMPLE
11904 = 93*(93+31+3+1).
PROG
(PARI)
gdivodd(n)={m=n; while(m/2==m\2, m=m/2); return(m)}
{for (n=2, 2*10^8, m=gdivodd(n)*sumdiv(n, d, d*(d%2)); if(m==n, print(n)))}
CROSSREFS
Sequence in context: A307741 A027147 A095724 * A224832 A139256 A166997
KEYWORD
nonn
AUTHOR
Antonio Roldán, May 19 2013
STATUS
approved