Puzzle [June, 1997]
Coincident Birthdays

1. How many people must be present to give a 50% probability of having (at least) two coincident
birthdays in one year?

2. How many people must be present to give a 50% probability of having (at least) three
birthdays in one year?

3. How many people must be present to give a 50% probability of having (at least) k coincident
birthdays in one year, where k>3? How swiftly does this number grow with increasing k?

Mathcad 6.0 Solution by Patrice Le Conte (paraphrased by Steven Finch)

Solution for k=2

Assume that birthdays are independent and equiprobable. If m:= 365 is the number of days in a year,
there are a total of m possible outcomes for the first person, m? possible outcomes for the first two
people, and thus mP possible outcomes for the first p people.

Let H 1 be the number of all outcomes (out of mP) where all people have different birthdays.
There will be m possible birthdays for the first, m - 1 for the second, m - 2 for the third, and thus:
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Therefore the probability that in a set of p people none have the same birthday is:
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and the probability that at least two people have coincident birthdays is
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P (22) =0.475695 P »(23) =0.507297
The required number of people to have a 50% probability is:

N, =23
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Solution for k=3

We can use the same procedure to find the probability that the number of coincident birthdays is greater
than two.
Let H 5 be the number of outcomes where the maximum number of coincident birthdays is exactly two.
The probability of having a maximum of exactly two coincident birthdays in a set of p people is
H
2
Qo=—n
mP

and the probability of having at least three coincident birthdays is
P3=1-Q2-Qy

Let C(m,n) be the number of combinations of m objects taken n at a time:
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In order to compute H », we will separate the p people into two classes: one of 2:i people whose
birthdays are coincident, and one of p - 2:i people whose birthdays are not coincident.

First let us compute the number of outcomes where we have i coincident birthdays. We can

choose 2-i people out of pin C(p,2-i) different ways. For each such selection of 2-i people,
there are

different ways of arranging them into sets of two. Finally, each of the i pairs and the remaining
p - 2-i people have distinct birthdays, and the number of ways this can happen is:
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So the number of outcomes in which exactly 2-i people have coincident birthdays is:
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Summing over i, we obtain:
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which we rewrite in a way easier to compute:
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The probability that at least three people have coincident birthdays is:

P3(p) =1-Q1(p) - Q2(p)

P 3(87) =0.499455 P 3(88) =0.511065
The required number of people to have a 50% probability is:

N, =88

3
General Solution (all k)

We can use the same procedure to compute the general case of k people having the same birthday.
First, the number of different ways of arranging k:i people into sets of k is:

1 k-i\l/k-ik\l/k-iz-k)'l ./2'k)= (k-i)!
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Let H(m,p,k) be the number of outcomes where the maximum number of coincident birthdays is exactly
k. We first compute the number of outcomes where there are exactly i coincident birthdays of k people.
This is done just as before, separating the p people into two classes: one of k:i people whose

birthdays are coincident, and one of the remaining p - k-i people. There
are

i-1
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ways each of the i sets can have distinct birthdays, and
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ways the remaining people can have birthdays (which needn't be distinct for k>2, hence the
recursion). Therefore:
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Summing over i, we obtain:
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Now we have Q(m,p,k)=7p and thus H(m-i,p-ki,j))=Q(m-i,p-ki,j)-(m-1i) for all i.
m
Hence:
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which can be rewritten in a form better suited to computation as:
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Introduce, for convenience, a function:
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then we have the following recursive definition (note the initial conditions):

Q(m,p,k) = |0 if (p<k) + (m<1)
otherwise
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So the probability that at least k people have coincident birthdays is:
k-1
P(Mp.K) =1- > Q(m.p.j)
j=1
We confirm that P(m,22,2) =0.475695 , P(m,23,2) =0.507297
P(m,87,3) =0.499455 , P(m,88,3) =0.511065

and compute that

P(m,186,4) =0.495826 P(m,187,4) =0.502685 N, = 187

As P is a recursive function, the time required for computation grows exponentially with k, so we
merely record here the results for k=5 :

P(m,312,5)=0.496196 P(m, 313,5)=0.50107 N, - 313

Let's try to verify these results through Monte Carlo simulation. The function K ¢(m, p) returns the
maximum number of coincident birthdays in a set of p. The function P ((m,p,k,n) returns the probability
of k coincident birthdates in a set of p, calculated by evaluating n times the function K ¢

and then counting how often its value exceeds k .
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It would take too much computation time to compare P and P ¢ for m=365, so we will use m=12, which

can be interpreted as the number of coincident months of birth for a set of p people.
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This confirms the agreement between the calculated and simulated probabilities.

A remarkably accurate approximation, due to Bruce Levin [1], makes computations possible for larger k.

See also [2, 3].
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