[go: up one dir, main page]

login
A225475
Triangle read by rows, k!*s_2(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
2
1, 1, 1, 3, 4, 2, 15, 23, 18, 6, 105, 176, 172, 96, 24, 945, 1689, 1900, 1380, 600, 120, 10395, 19524, 24278, 20880, 12120, 4320, 720, 135135, 264207, 354662, 344274, 241080, 116760, 35280, 5040, 2027025, 4098240, 5848344, 6228096, 4993296, 2956800, 1229760
OFFSET
0,4
COMMENTS
The Stirling-Frobenius cycle numbers are defined in A225470.
FORMULA
For a recurrence see the Sage program.
T(n, 0) ~ A001147; T(n, 1) ~ A004041.
T(n, n) ~ A000142; T(n, n-1) ~ A001563.
T(n,k) = A028338(n,k)*A000142(k). - Philippe Deléham, Jun 24 2015
EXAMPLE
[n\k][ 0, 1, 2, 3, 4, 5]
[0] 1,
[1] 1, 1,
[2] 3, 4, 2,
[3] 15, 23, 18, 6,
[4] 105, 176, 172, 96, 24,
[5] 945, 1689, 1900, 1380, 600, 120.
MATHEMATICA
SFCO[n_, k_, m_] := SFCO[n, k, m] = If[ k > n || k < 0, Return[0], If[ n == 0 && k == 0, Return[1], Return[ k*SFCO[n - 1, k - 1, m] + (m*n - 1)*SFCO[n - 1, k, m]]]]; Table[ SFCO[n, k, 2], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2013, translated from Sage *)
PROG
(Sage)
@CachedFunction
def SF_CO(n, k, m):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return k*SF_CO(n-1, k-1, m) + (m*n-1)*SF_CO(n-1, k, m)
for n in (0..8): [SF_CO(n, k, 2) for k in (0..n)]
CROSSREFS
Cf. A028338, A225479 (m=1), A048594.
Sequence in context: A059114 A246322 A166074 * A259334 A210488 A244364
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 19 2013
STATUS
approved