OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,3,0,-2).
FORMULA
G.f.: (1+5*x+7*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)).
a(n) = a(n-1)+4 if n odd.
a(n) = a(n-1)*2 if n even.
a(2n) = 9*2^n - 8 = A048491(n).
a(2n+1) = 9*2^n - 4 = A053209(n+1).
a(n) = 3*a(n-2) - 2*a(n-4) with n>3, a(0)=1, a(1)=5, a(2)=10, a(3)=14.
a(n) = 9*2^floor(n/2)-2*(-1)^n-6. [Bruno Berselli, Apr 27 2013]
MATHEMATICA
CoefficientList[Series[(1+5x+7x^2-x^3)/((1-2x^2)(1-x)(1+x)), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 3, 0, -2}, {1, 5, 10, 14}, 50] (* Harvey P. Dale, Sep 17 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Apr 15 2013
STATUS
approved