OFFSET
1,1
COMMENTS
Conjecture: a(n) <= (n+4)*(n+5)+1 for all n>0.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..500
EXAMPLE
a(10) = 3 since P(x) = x^{10} + 2*x^9 + 3*x^8 + 5*x^7 + 7*x^6
+ 11*x^5 + 13*x^4 + 17*x^3 + 19*x^2 + 23*x + 29 is irreducible modulo 3, but reducible modulo 2, for,
P(x)==(x+1)^2*(x^3+x+1)*(x^5+x^3+1) (mod 2).
Note also that a(16) = 421 = (16+4)*(16+5)+1.
MATHEMATICA
A[n_, x_]:=A[n, x]=Sum[x^n+Prime[k]*x^(n-k), {k, 1, n}]
Do[Do[If[IrreduciblePolynomialQ[A[n, x], Modulus->Prime[k]]==True, Print[n, " ", Prime[k]]; Goto[aa]], {k, 1, PrimePi[n^2+9n+21]}];
Print[n, " ", counterexample]; Label[aa]; Continue, {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 07 2013
STATUS
approved