[go: up one dir, main page]

login
A224295
Number of permutations of length n avoiding 12345 and 12354.
3
1, 1, 2, 6, 24, 118, 672, 4256, 29176, 212586, 1625704, 12930160, 106242392, 897210996, 7756325952, 68422701792, 614341492144, 5602330498170, 51798365474872, 484856381630288, 4589003801130456, 43870126242653020, 423219224419273888, 4116816114087389056, 40351014094161799568, 398270701521760650532
OFFSET
0,3
COMMENTS
Conjectured to be the number of permutations of length n avoiding the partially ordered pattern (POP) {2>1>5>3, 5>4} of length 5. That is, conjectured to be the number of length n permutations having no subsequences of length 5 in which the elements 3 and 4 are the smallest, and the element in position 2 is larger than that in position 1, which in turn is larger than the element in position 5.- Sergey Kitaev, Dec 13 2020
Restatement of the comment by Kitaev: Conjectured to be the number of permutations of length n avoiding patterns 45123 and 45213. - Alexander Burstein, Feb 05 2024
LINKS
Michael H. Albert, Christian Bean, Anders Claesson, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, Combinatorial Exploration: An algorithmic framework for enumeration, arXiv:2202.07715 [math.CO], 2022.
Michael H. Albert, Christian Bean, Anders Claesson, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, PermPAL Database
Christian Bean, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, Permutations avoiding bipartite partially ordered patterns have a regular insertion encoding, The Electronic Journal of Combinatorics, Volume 31, Issue 3 (2024); arXiv preprint, arXiv:2312.07716 [math.CO], 2023.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
MAPLE
# Programs can be obtained from author's personal website.
CROSSREFS
Cf. A006318.
Sequence in context: A224318 A079106 A247472 * A263777 A088713 A193938
KEYWORD
nonn
AUTHOR
Brian Nakamura, Apr 03 2013
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 13 2020
STATUS
approved