[go: up one dir, main page]

login
A224242
Numbers k such that k^2 XOR (k+1)^2 is a square, and k^2 XOR (k-1)^2 is a square, where XOR is the bitwise logical XOR operator.
0
0, 4, 24, 44, 112, 480, 1984, 8064, 32512, 130560, 263160, 278828, 340028, 523264, 2095104, 8384512, 25239472, 32490836, 33546240, 134201344, 536838144, 2147418112
OFFSET
1,2
COMMENTS
A subsequence of A221643: k's such that A221643(k) = A221643(k-1) + 1.
A059153 is a subsequence. Terms that are not in A059153: 0, 44, 263160, 278828, 340028, 25239472, 32490836. Conjecture: the subsequence of non-A059153 terms is infinite.
MATHEMATICA
Select[Range[0, 84*10^5], AllTrue[{Sqrt[BitXor[#^2, (#+1)^2]], Sqrt[BitXor[#^2, (#-1)^2] ]}, IntegerQ]&] (* The program generates the first 16 terms of the sequence. *) (* Harvey P. Dale, Nov 10 2022 *)
PROG
(C)
#include <stdio.h>
#include <math.h>
int main() {
unsigned long long a, i, t;
for (i=0; i < (1L<<32)-1; ++i) {
a = (i*i) ^ ((i+1)*(i+1));
t = sqrt(a);
if (a != t*t) continue;
a = (i*i) ^ ((i-1)*(i-1));
t = sqrt(a);
if (a != t*t) continue;
printf("%llu, ", i);
}
return 0;
}
CROSSREFS
Sequence in context: A031117 A174178 A139245 * A066770 A080380 A364278
KEYWORD
nonn,base,less
AUTHOR
Alex Ratushnyak, Apr 01 2013
STATUS
approved