[go: up one dir, main page]

login
A222144
T(n,k) = number of n X k 0..4 arrays with no entry increasing mod 5 by 4 rightwards or downwards, starting with upper left zero.
14
1, 4, 4, 16, 52, 16, 64, 676, 676, 64, 256, 8788, 28564, 8788, 256, 1024, 114244, 1206964, 1206964, 114244, 1024, 4096, 1485172, 50999956, 165770032, 50999956, 1485172, 4096, 16384, 19307236, 2154990196, 22767656980, 22767656980
OFFSET
1,2
COMMENTS
1/5 the number of 5-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..378 (terms 1..127 from R. H. Hardin)
FORMULA
T(n,k) = 4 * (6*A198906(n,k) - 3*A207997(n,k) - 2) for n*k > 1. - Andrew Howroyd, Jun 27 2017
EXAMPLE
Table starts
.......1.............4...................16.........................64
.......4............52..................676.......................8788
......16...........676................28564....................1206964
......64..........8788..............1206964..................165770032
.....256........114244.............50999956................22767656980
....1024.......1485172...........2154990196..............3127020364012
....4096......19307236..........91058563924............429480137694664
...16384.....250994068........3847656513844..........58986884432558548
...65536....3262922884......162581749707796........8101544704688334244
..262144...42417997492.....6869850581244916.....1112705429924911477552
.1048576..551433967396...290283793189916884...152824358676750267429220
.4194304.7168641576148.12265868026121849524.20989638386627725143014812
...
Some solutions for n=3, k=4:
..0..0..1..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..1..1
..1..1..2..2....1..1..1..2....0..1..3..3....0..2..2..0....0..1..2..3
..3..4..0..0....1..3..1..3....2..2..0..1....0..2..2..2....1..4..2..3
CROSSREFS
Columns 1-7 are A000302(n-1), A222138, A222139, A222140, A222141, A222142, A222143.
Main diagonal is A068255.
Cf. A078099 (3 colorings), A222444 (4 colorings), A198906 (unlabeled 5 colorings), A222281 (6 colorings), A222340 (7 colorings), A222462 (8 colorings).
Sequence in context: A257613 A223202 A298448 * A342817 A107382 A257622
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 09 2013
STATUS
approved