OFFSET
1,1
COMMENTS
Sequence with a(1) = 1 is decimal expansion of sqrt(4 - sqrt(4 - sqrt(4 - sqrt(4 - ... )))) = A222133.
Because 17 == 1 (mod 4), the basis for integers in the real quadratic number field K(sqrt(17)) is <1, omega(17)>, where omega(17) = (1 + sqrt(17))/2. - Wolfdieter Lang, Feb 10 2020
This is the positive root of the polynomial x^2 - x - 4, with negative root -A222133. - Wolfdieter Lang, Dec 10 2022
It is the spectral radius of the diamond graph (see Seeger and Sossa, 2023). - Stefano Spezia, Sep 19 2023
c^n = A006131(n) + A006131(n-1) * d, where c = (1 + sqrt(17))/2 and d = (-1 + sqrt(17))/2. - Gary W. Adamson, Nov 25 2023
LINKS
Alberto Seeger and David Sossa, Infinite families of connected graphs with equal spectral radius, Australas. J. Combin. 87 (2) (2023), 258-276. See pp. 260 and 263.
FORMULA
EXAMPLE
2.561552812808830274910704...
MAPLE
Digits:=140:
evalf((sqrt(17)+1)/2); # Alois P. Heinz, Sep 19 2023
MATHEMATICA
RealDigits[(1 + Sqrt[17])/2, 10, 130]
CROSSREFS
KEYWORD
AUTHOR
Jaroslav Krizek, Feb 08 2013
STATUS
approved