OFFSET
1,1
COMMENTS
Hildebrand proved that this sequence is infinite. More generally, he showed that the eight values (1, 1, 1), (1, 1, -1), ..., (-1, -1, -1) each appear infinitely often as consecutive values of the Liouville function.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Adolf Hildebrand, On consecutive values of the Liouville function, Enseign. Math. (2) 32 (1986), no. 3-4, pp. 219-226.
MATHEMATICA
SequencePosition[LiouvilleLambda[Range[250]], {x_, x_, x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 16 2021 *)
PROG
(PARI) is(n)=my(k=(-1)^bigomega(n)); k==(-1)^bigomega(n+1) && k==(-1)^bigomega(n+2)
CROSSREFS
KEYWORD
nonn
AUTHOR
Charles R Greathouse IV, Jan 09 2013
STATUS
approved