[go: up one dir, main page]

login
A221178
Union of (prime powers minus 1) and values of Euler totient function.
2
0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 63, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 124, 126, 127, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176
OFFSET
1,3
FORMULA
Union of A181062 and A002202.
MATHEMATICA
max = 200;
selNu = Select[Range[max], PrimeNu[#] == 1&]-1;
phiQ[m_] := Select[Range[m+1, 2*m*Product[1/(1-1/(k*Log[k])), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m&, 1] != {};
selPhi = Select[Range[max], phiQ];
Join[{0}, Union[selNu, selPhi]]
PROG
(PARI) list(lim)=my(P=1, q, v, u=List([0])); forprime(p=2, default(primelimit), if(eulerphi(P*=p)>=lim, q=p; break)); v=vecsort(vector(P/q*lim\eulerphi(P/q), k, eulerphi(k)), , 8); v=select(n->n<=lim, v); forprime(p=2, sqrtint(lim\1+1), P=p; while((P*=p) <= lim+1, listput(u, P-1))); vecsort(concat(v, Vec(u)), , 8) \\ Charles R Greathouse IV, Jan 08 2013
CROSSREFS
Cf. A000010, A002202, A000961, A181062, A070932 (multiplicative closure).
Sequence in context: A335042 A257282 A336488 * A080389 A359755 A226038
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jan 06 2013
STATUS
approved