[go: up one dir, main page]

login
A220884
Triangle read by rows: row n gives coefficients of expansion of Product_{k=2..n} ((n+1-k)*x+k), starting with lowest power.
3
1, 1, 2, 1, 6, 8, 2, 24, 58, 37, 6, 120, 444, 504, 204, 24, 720, 3708, 6388, 4553, 1318, 120, 5040, 33984, 81136, 87296, 44176, 9792, 720, 40320, 341136, 1064124, 1582236, 1203921, 463860, 82332, 5040, 362880, 3733920, 14602320, 28328480, 29724000, 17164320, 5270480, 773280, 40320, 3628800, 44339040, 210852936, 512539012, 700870638, 557061609, 255644668, 64621692, 8026416, 362880
OFFSET
0,3
COMMENTS
Related to Stirling numbers A008275, A008277.
LINKS
Irfan Durmić, Alex Han, Pamela E. Harris, Rodrigo Ribeiro, and Mei Yin, Probabilistic Parking Functions, arXiv:2211.00536 [math.CO], 2022.
Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012-2013.
EXAMPLE
Triangle begins:
[1]
[1]
[2, 1]
[6, 8, 2]
[24, 58, 37, 6]
[120, 444, 504, 204, 24]
[720, 3708, 6388, 4553, 1318, 120]
[5040, 33984, 81136, 87296, 44176, 9792, 720]
...
MAPLE
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
expand(mul((n+1-k)*x+k, k=2..n))):
seq(T(n), n=0..10); # Alois P. Heinz, Nov 29 2015
MATHEMATICA
row[n_] := CoefficientList[Product[((n+1-k)*x+k), {k, 2, n}], x]; Table[ row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 17 2016 *)
CROSSREFS
Row sums give A000272(n+1).
Columns k=0-1 give A000142, A002538(n-1).
Sequence in context: A113374 A136470 A363747 * A217877 A138510 A026215
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Dec 29 2012
EXTENSIONS
T(0,0)=1 prepended by Alois P. Heinz, Nov 29 2015
STATUS
approved