OFFSET
1,2
COMMENTS
Conjecture: a(n)>0 for every n=1,2,3,.... Moreover, any odd integer greater than 2092 can be written as x+y (x,y>0) with x-3, x+3 and x^18+3*y^18 all prime.
This has been verified for n up to 2*10^6.
Zhi-Wei Sun also made the following general conjecture: For each positive integer m, any sufficiently large odd integer n can be written as x+y (x,y>0) with x-3, x+3 and x^m+3*y^m all prime (and hence there are infinitely many primes in the form x^m+3*y^m). In particular, for m = 1, 2, 3, 4, 5, 6, 18 any odd integer greater than one can be written as x+y (x,y>0) with x^m+3*y^m prime, and for m =1, 2, 3 any odd integer n>15 can be written as x+y (x,y>0) with x-3, x+3 and x^m+3*y^m all prime.
Our computation suggests that for each m=7,...,20 any odd integer greater than 32, 10, 24, 30, 48, 36, 72, 146, 48, 48, 152, 2, 238, 84 respectively can be written as x+y (x,y>0) with x^m+3*y^m prime.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588.
EXAMPLE
a(3)=1 since 2*3-1=5=1+4 with 1^18+3*4^18=206158430209 prime.
MATHEMATICA
a[n_]:=a[n]=Sum[If[PrimeQ[k^18+3*(2n-1-k)^18]==True, 1, 0], {k, 0, 2n-1}]
Do[Print[n, " ", a[n]], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 16 2012
STATUS
approved