OFFSET
1,2
COMMENTS
Row 2 of A220562.
From Wajdi Maaloul, Jul 04 2022: (Start)
For n > 0, a(n) is the number of ways to tile the S-shaped figure of length n below with squares and dominoes. For instance, a(4) is the number of ways to tile this figure with squares and dominoes.
_ _ _ _
|_|_|_|_|_
|_|_|_|_|
(End)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
Index entries for linear recurrences with constant coefficients, signature (2,4,0,-1).
FORMULA
a(n) = 2*a(n-1) + 4*a(n-2) - a(n-4).
G.f.: x*(1 + 3*x - x^3) / ((1 + x)*(1 - 3*x - x^2 + x^3)). - Colin Barker, Jul 31 2018
EXAMPLE
Some solutions for n=3, 0=self, 3=ne, 4=w, 6=e, 7=sw (reciprocal directions total 10):
0 6 4 0 0 0 0 7 0 6 4 0 0 0 0 0 7 0 0 6 4
0 6 4 0 0 0 3 6 4 0 0 0 0 6 4 3 0 0 0 0 0
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
R. H. Hardin, Dec 16 2012
STATUS
approved