[go: up one dir, main page]

login
A220424
Triangle read by rows: A007651 expanded into single digits.
4
1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 1, 3, 1, 1, 1, 2, 3, 1, 2, 3, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 3, 1, 1, 2, 3, 1, 1, 2, 2, 2, 1, 2, 3, 1, 1, 2, 3, 1, 2
OFFSET
1,5
COMMENTS
A007651(n) = sum{T(n,k)*10^(A005341(n)-k): k=1..A005341(n)}.
LINKS
Eric Weisstein's World of Mathematics, Look and Say Sequence
EXAMPLE
. Initial rows A007651
. 1: 1 1
. 2: 1,1 11
. 3: 1,2 12
. 4: 1,1,2,1 1121
. 5: 1,2,2,1,1,1 122111
. 6: 1,1,2,2,1,3 112213
. 7: 1,2,2,2,1,1,3,1 12221131
. 8: 1,1,2,3,1,2,3,1,1,1 1123123111
. 9: 1,2,2,1,3,1,1,1,2,1,3,1,1,3 12213111213113 .
PROG
(Haskell)
import Data.List (group)
a220424 n k = a220424_tabf !! (n-1) !! (k-1)
a220424_row n = a220424_tabf !! (n-1)
a220424_tabf = iterate
(concatMap (\xs -> [head xs, length xs]) . group) [1]
CROSSREFS
Cf. A005341 (row lengths), A034002 (method A version).
Sequence in context: A050412 A374382 A307017 * A182907 A334745 A323231
KEYWORD
nonn,base,tabf
AUTHOR
Reinhard Zumkeller, Dec 15 2012
STATUS
approved