[go: up one dir, main page]

login
A219161
Recurrence equation a(n+1) = a(n)^3 - 3*a(n) with a(0) = 5.
6
5, 110, 1330670, 2356194280407770990, 13080769480548649962914459850235688797656360638877986030
OFFSET
0,1
COMMENTS
For some general remarks on this recurrence see A001999.
The next term (a(5)) has 166 digits. - Harvey P. Dale, Apr 23 2019
LINKS
E. B. Escott, Rapid method for extracting a square root, Amer. Math. Monthly, 44 (1937), 644-646.
N. J. Fine, Infinite products for k-th roots, Amer. Math. Monthly Vol. 84, No. 8, Oct. 1977, 629-630.
FORMULA
a(n) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n).
Product_{n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(7/3).
a(n) = 2*T(3^n,5/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A001999. - Peter Bala, Feb 01 2017
MATHEMATICA
RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 5}, a, {n,
0, 5}] (* G. C. Greubel, Dec 30 2016 *)
NestList[#^3-3#&, 5, 5] (* Harvey P. Dale, Apr 23 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Nov 13 2012
STATUS
approved