[go: up one dir, main page]

login
A219157
Number of prime pairs {p,q} with p>q and p-2,q+2 also prime such that p+(1+mod(-n,6))q=n if n is not congruent to 2 mod 6, and p-q=n and q<n/2 if n=2 (mod 6).
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 0, 2, 0, 2, 2, 1, 1, 2, 3, 1, 0, 2, 1, 1, 0, 2, 2, 1, 2, 1, 2, 1, 0, 1, 0, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 0, 1, 3, 1, 0
OFFSET
1,22
COMMENTS
Conjecture: a(n)>0 for all n>30000 with n different from 38451, 46441, 50671, 62371.
This conjecture is stronger than the twin prime conjecture. It is similar to the conjecture associated with A219055 about sexy prime pairs.
EXAMPLE
a(16)=1 since 16=7+3*3 with 7-2 and 3+2 prime. a(26)=1 since 26=31-5 with 31-2 and 5+2 prime.
MATHEMATICA
c[n_]:=c[n]=If[Mod[n-2, 6]==0, 1, -1-Mod[-n, 6]]
d[n_]:=d[n]=2+If[Mod[n-2, 6]>0, Mod[-n, 6], 0]
a[n_]:=a[n]=Sum[If[PrimeQ[Prime[k]+2]==True&&PrimeQ[n+c[n]Prime[k]]==True&&PrimeQ[n+c[n]Prime[k]-2]==True, 1, 0],
{k, 1, PrimePi[(n-1)/d[n]]}]
Do[Print[n, " ", a[n]], {n, 1, 100000}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 12 2012
STATUS
approved