[go: up one dir, main page]

login
A218868
Triangular array read by rows: T(n,k) is the number of n-permutations that have exactly k distinct cycle lengths.
8
1, 2, 3, 3, 10, 14, 25, 95, 176, 424, 120, 721, 3269, 1050, 6406, 21202, 12712, 42561, 178443, 141876, 436402, 1622798, 1418400, 151200, 3628801, 17064179, 17061660, 2162160, 48073796, 177093256, 212254548, 41580000, 479001601, 2293658861, 2735287698, 719072640
OFFSET
1,2
COMMENTS
T(A000217(n),n) gives A246292. - Alois P. Heinz, Aug 21 2014
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009
FORMULA
E.g.f.: Product_{i>=1} (1 + y*exp(x^i/i) - y).
EXAMPLE
: 1;
: 2;
: 3, 3;
: 10, 14;
: 25, 95;
: 176, 424, 120;
: 721, 3269, 1050;
: 6406, 21202, 12712;
: 42561, 178443, 141876;
: 436402, 1622798, 1418400, 151200;
MAPLE
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*`if`(j=0, 1, x), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..16); # Alois P. Heinz, Aug 21 2014
MATHEMATICA
nn=10; a=Product[1-y+y Exp[x^i/i], {i, 1, nn}]; f[list_]:=Select[list, #>0&]; Map[f, Drop[Range[0, nn]!CoefficientList[Series[a , {x, 0, nn}], {x, y}], 1]]//Grid
CROSSREFS
Columns k=1-3 give: A005225, A005772, A133119.
Row sums are: A000142.
Row lengths are: A003056.
Cf. A208437, A242027 (the same for endofunctions), A246292, A317327.
Sequence in context: A123027 A100652 A094416 * A329874 A152300 A117030
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Nov 07 2012
STATUS
approved