[go: up one dir, main page]

login
A217733
Expansion of (1+x-x^2)/((1-x)*(1-3*x^2-x^3)).
1
1, 2, 4, 8, 15, 29, 54, 103, 192, 364, 680, 1285, 2405, 4536, 8501, 16014, 30040, 56544, 106135, 199673, 374950, 705155, 1324524, 2490416, 4678728, 8795773, 16526601, 31066048, 58375577, 109724746, 206192780, 387549816, 728303087, 1368842229, 2572459078, 4834829775, 9086219464
OFFSET
0,2
FORMULA
G.f.: (1+x-x^2)/(1-x-3*x^2+2*x^3+x^4).
a(n) = sum( A216236(n-k,k), 0<=k<=n ).
a(n) = a(n-1)+3*a(n-2)-2*a(n-3)-a(n-4) for n>=4, a(0)=1, a(1)=2, a(2)=4, a(3)=8.
a(n+1) - a(n) = A065455(n).
MATHEMATICA
CoefficientList[Series[(1 + x - x^2)/((1 - x) (1 - 3 x^2 - x^3)), {x, 0, 40}], x] (* Bruno Berselli, Mar 25 2013 *)
PROG
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x-x^2)/((1-x)*(1-3*x^2-x^3)))); // Bruno Berselli, Mar 25 2013
(Maxima) makelist(coeff(taylor((1+x-x^2)/((1-x)*(1-3*x^2-x^3)), x, 0, n), x, n), n, 0, 40); /* Bruno Berselli, Mar 25 2013 */
CROSSREFS
Sequence in context: A271364 A036621 A001383 * A208976 A278554 A335473
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Mar 22 2013
STATUS
approved