[go: up one dir, main page]

login
A217671
a(n) is the least prime of the set of the smallest n consecutive primes a(n)=q_1(n), q_2(n),..., such that between (1/2)*q_i and (1/2)q_(i+1), i=1,...,n-1, there exists a prime, or a(n)=0 if no such set of primes exists.
1
3, 3, 3, 73, 523, 6581, 10753, 43103, 43103, 43103, 55457, 55457, 28751773, 278689963, 278689963, 784284211, 4440915607, 8340839629, 30651695947, 50246427391, 50246427391
OFFSET
2,1
COMMENTS
If a(N) = 0, then a(n) = 0 for n > N. Conjecture 39 in the Shevelev link says that a(n) > 0.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Oct 10 2012
EXTENSIONS
a(15)-a(17) from Carlos Rivera and Hans Havermann
a(18)-a(20) from Hans Havermann
a(21)-a(22) from Donovan Johnson, Oct 17 2012
STATUS
approved