OFFSET
1,1
COMMENTS
This sequence in particular is motivated by the coincidence that both (2^41)*(3^43) and (3^43)*(5^47) have prime numbers of each digit.
LINKS
Robert Israel, Table of n, a(n) for n = 1..11
EXAMPLE
MAPLE
N:= 10^100: # to get all terms <= N
filter:= proc(n) local L, P, d;
L:= convert(n, base, 10);
P:= Vector(10);
for d in L do P[d+1]:= P[d+1]+1 od:
andmap(isprime, P);
end proc:
sort(select(filter, [seq(seq(3^r*5^s, r=0..floor(log[3](N/5^s))), s=0..floor(log[5](N)))])); # Robert Israel, May 08 2017
PROG
(PARI) prDigits(n)=my(d=digits(n), v=vector(10)); for(i=1, #d, v[d[i]+1]++); for(i=1, 10, if(!isprime(v[i]), return(0))); 1
list(lim)=my(v=List(), t); for(a=0, log(lim+.5)\log(5), t=5^a; while(t<=lim, if(prDigits(t), listput(v, t)); t*=3)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 19 2013
CROSSREFS
KEYWORD
nonn,base,less
AUTHOR
James G. Merickel, Oct 02 2012
EXTENSIONS
More terms from Robert Israel, May 08 2017
STATUS
approved