[go: up one dir, main page]

login
A217275
Expansion of 2/(1-x+sqrt(1-2*x-27*x^2)).
8
1, 1, 8, 22, 141, 561, 3291, 15583, 88691, 459187, 2599570, 14136200, 80391235, 450046143, 2579291352, 14710321998, 85002979083, 491050703739, 2859262171872, 16674374605722, 97747766045679, 574231140306699, 3385974360904227, 20009363692187115, 118582649963026677
OFFSET
0,3
LINKS
FORMULA
Generally for G.f. = 2/(1-x+sqrt(1-2x-(4*z-1)*x^2)) is asymptotic
a(n) ~ (1+2*sqrt(z))^(n+3/2)/(2*sqrt(Pi)*z^(3/4)*n^(3/2)); here we have the case z=7.
D-finite with recurrence: (n+2)*a(n)=(2*n+1)*a(n-1)+(4*z-1)*(n-1)*a(n-2);; here with z=7.
G.f.: 1/(1 - x - 7*x^2/(1 - x - 7*x^2/(1 - x - 7*x^2/(1 - x - 7*x^2/(1 - ....))))), a continued fraction. - Ilya Gutkovskiy, May 26 2017
MATHEMATICA
Table[SeriesCoefficient[2/(1-x+Sqrt[1-2*x-27*x^2]), {x, 0, n}], {n, 0, 25}]
Table[Sum[Binomial[n, 2k]*Binomial[2k, k]*7^k/(k+1), {k, 0, n}], {n, 0, 25}]
CROSSREFS
Cf. A001006 (z=1), A025235 (z=2), A025237 (z=3), A091147 (z=4), A091148 (z=5), A091149 (z=6).
Sequence in context: A264631 A026593 A131622 * A183308 A362825 A117613
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 29 2012
STATUS
approved