[go: up one dir, main page]

login
A216237
Happy palindromic numbers.
1
1, 7, 44, 262, 313, 383, 404, 464, 565, 656, 818, 888, 989, 1221, 1771, 1881, 2112, 3553, 4004, 4554, 4774, 5335, 5445, 5555, 7117, 7447, 7887, 8118, 8778, 11311, 11811, 12021, 12321, 12921, 14641, 15451, 15951, 17071, 17371, 18081, 18381, 20602, 21012
OFFSET
1,2
COMMENTS
That is, happy numbers (A007770) that are palindromic (A002113).
LINKS
FORMULA
A103369(a(n)) * A136522(a(n)) = 1. - Reinhard Zumkeller, Mar 15 2013
MATHEMATICA
palQ[n_] := Block[{d=IntegerDigits@n}, d == Reverse@d]; happyQ[n_] := Block[{w = n}, While[w > 6, w = Total[IntegerDigits[w]^2]]; w == 1]; Select[Range[21012], palQ[#] && happyQ[#] &] (* Giovanni Resta, Mar 14 2013 *)
PROG
(Haskell)
a216237 n = a216237_list !! (n-1)
a216237_list = filter ((== 1) . a136522) a007770_list
-- Reinhard Zumkeller, Mar 15 2013
CROSSREFS
Sequence in context: A203210 A323923 A026116 * A291388 A037531 A178719
KEYWORD
nonn,base,easy
AUTHOR
Jayanta Basu, Mar 14 2013
STATUS
approved