%I #11 Mar 30 2014 12:13:32
%S 2,1,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,7,2,3,2,3,
%T 2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,7,2,3,2,3,2,5,2,3,
%U 2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2
%N Least m>0 such that n^2-m and n-m are relatively prime.
%H Clark Kimberling, <a href="/A214720/b214720.txt">Table of n, a(n) for n = 1..1000</a>
%e a(12) = 5 because of the following:
%e gcd(144-1,11) > 1,
%e gcd(144-2,10) > 1 ,
%e gcd(144-3,9) > 1,
%e gcd(144-4,8) >1,
%e gcd(144-5,7) = 1.
%p A214720 := proc(n)
%p for m from 1 do
%p if igcd(n^2-m,n-m) =1 then
%p return m;
%p end if;
%p end do:
%p end proc: # _R. J. Mathar_, Mar 30 2014
%t Table[m = 1; While[GCD[5^n - m, n - m] != 1, m++]; m, {n, 1, 140}]
%Y Cf. A214716, A053669.
%K nonn,easy
%O 1,1
%A _Clark Kimberling_, Jul 27 2012