[go: up one dir, main page]

login
A212775
Number of partitions of 2^(2^n) into powers of 2.
1
2, 4, 36, 692004, 114788185359199234852802340
OFFSET
0,1
COMMENTS
Lengths (in decimal digits) of the terms a(0), a(1), ... are: 1, 1, 2, 6, 27, 119, 525, 2241, 9330, ... .
LINKS
FORMULA
a(n) = [x^2^(2^n-1)] 1/(1-x) * 1/Product_{j=0..2^n-1} (1-x^(2^j)).
EXAMPLE
a(0) = 2 because the number of partitions of 2^2^0 = 2 into powers of 2 is 2: [2], [1,1].
a(1) = 4: [4], [2,2], [2,1,1], [1,1,1,1].
MAPLE
b:= proc(n, j) option remember; local nn, r;
if n<0 then 0
elif j=0 then 1
elif j=1 then n+1
elif n<j then b(n, j):= b(n-1, j) +b(2*n, j-1)
else nn:= 1 +floor(n);
r:= n-nn;
(nn-j) *binomial(nn, j) *add(binomial(j, h)
/(nn-j+h) *b(j-h+r, j) *(-1)^h, h=0..j-1)
fi
end:
a:= n-> b(1, 2^n):
seq(a(n), n=0..6);
MATHEMATICA
b[n_, j_] := b[n, j] = Module[{nn, r}, Which[n<0, 0, j==0, 1, j==1, n+1, n < j, b[n, j] = b[n-1, j] + b[2*n, j-1], True, nn = 1+Floor[n]; r = n-nn; (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)*b[j-h+r, j]*(-1)^h, {h, 0, j-1}]]]; a[n_] := b[1, 2^n]; Table[a[n], {n, 0, 6}] (* Jean-François Alcover, Feb 28 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 26 2012
STATUS
approved