[go: up one dir, main page]

login
A212729
T(n,k)=Number of 0..2 arrays of length n+2*k-1 with sum less than 2*k in any length 2k subsequence (=less than 50% duty cycle)
14
3, 31, 5, 294, 67, 8, 2727, 690, 148, 13, 25048, 6681, 1669, 322, 21, 228826, 63052, 16878, 4057, 677, 34, 2083371, 587036, 163495, 43050, 9807, 1439, 55, 18925047, 5420945, 1549297, 428617, 109995, 23401, 3086, 89, 171633840, 49790907, 14492156
OFFSET
1,1
COMMENTS
Table starts
..3...31....294....2727....25048....228826....2083371....18925047....171633840
..5...67....690....6681....63052....587036....5420945....49790907....455613780
..8..148...1669...16878...163495...1549297...14492156...134429604...1239807015
.13..322...4057...43050...428617...4135249...39179582...366956550...3410099667
.21..677...9807..109995..1128418..11095332..106521624..1007510947...9434164257
.34.1439..23401..280255..2972836..29835132..290452176..2775231053..26189744683
.55.3086..54747..709626..7819020..80249504..792966548..7657995382..72853584571
.89.6625.128892.1780062.20492970.215618862.2165136076.21147760860.202893735787
LINKS
EXAMPLE
Some solutions for n=3 k=4
..2....1....1....0....1....2....1....0....0....1....2....2....1....0....2....2
..2....0....1....0....1....0....0....1....0....1....1....0....1....2....0....0
..0....1....1....1....0....1....1....1....0....0....0....0....2....2....1....1
..0....0....1....1....2....0....1....1....1....1....0....1....1....1....0....0
..0....0....2....0....0....2....1....1....0....1....0....1....0....0....2....2
..0....1....0....0....1....1....1....0....2....1....0....0....0....1....1....0
..0....0....1....2....1....1....0....0....2....0....1....0....0....0....0....0
..2....0....0....1....1....0....0....2....1....0....1....0....0....0....1....1
..2....1....0....0....0....0....1....0....1....2....1....0....1....0....0....1
..2....0....2....0....2....2....1....1....0....2....1....1....0....2....2....0
CROSSREFS
Column 1 is A000045(n+3)
Sequence in context: A053300 A322777 A089281 * A218357 A090543 A215946
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin May 25 2012
STATUS
approved