[go: up one dir, main page]

login
A212584
Nonnegative walks of length n on the x-axis starting at the origin using steps {1,-1} and visiting no point more than twice.
5
1, 1, 2, 3, 5, 6, 9, 12, 18, 24, 34, 46, 65, 89, 124, 170, 236, 325, 450, 620, 857, 1182, 1633, 2253, 3111, 4293, 5927, 8180, 11292, 15585, 21513, 29693, 40986, 56571, 78085, 107778, 148765, 205336, 283422, 391200, 539966, 745302, 1028725, 1419925, 1959892
OFFSET
0,3
FORMULA
G.f. (1 + x^3 - x^5)/(1 - x - x^2 + x^3 - x^4 + x^6).
a(n) = a(n-2) + a(n-4) + a(n-5) + 1, a(0..4) = {1,1,2,3,5}.
a(n) = g(n) + sum(j=0..n-4, g(j) * sum(k=1..(n-j)/4, binomial(n-j-3*k-1, k-1))), g(j) = if(j<3,1,2) + floor(j/2).
EXAMPLE
The 5 walks of length 4 are (1,1,1,1),(1,1,1,-1),(1,1,-1,1),(1,1,-1,-1) and (1,-1,1,1).
MATHEMATICA
g[j_]:= If[j<3, 1, 2] + Floor[j/2]; Table[Sum[(g[j])*((Sum[Binomial[(n-j-3*k-1), k-1], {k, 1, (n-j)/4}])), {j, 0, n-4}] + g[n], {n, 0, 45}]
CoefficientList[Series[(1+x^3-x^5)/(1-x-x^2+x^3-x^4+x^6), {x, 0, 45}], x]
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
David Scambler, May 22 2012
STATUS
approved