[go: up one dir, main page]

login
A211896
G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^4 * x^n/n ), where Jacobsthal(n) = A001045(n).
4
1, 3, 6, 90, 723, 10689, 130428, 1862580, 25594611, 368313993, 5289203262, 77279744418, 1134460916361, 16798605635235, 249994099311288, 3740771822960664, 56208829313956998, 847934859174601650, 12834366187138678836, 194855374723972622988, 2966358133685609559042
OFFSET
0,2
COMMENTS
Given g.f. A(x), note that A(x)^(1/3) is not an integer series.
FORMULA
G.f.: ( (1+2*x)^4*(1+8*x)^4 / ((1-x)*(1-4*x)^6*(1-16*x)) )^(1/27).
G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^4 / 27 * x^n/n ).
a(n) ~ 3^(5/27) * 2^(4*n) / (5^(1/27) * Gamma(1/27) * n^(26/27)). - Vaclav Kotesovec, Oct 18 2020
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 90*x^3 + 723*x^4 + 10689*x^5 + 130428*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^4*x^3/3 + 5^4*x^4/4 + 11^4*x^5/5 + 21^4*x^6/6 + 43^4*x^7/7 +...+ Jacobsthal(n)^4*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
PROG
(PARI) {Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)), n)}
{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^4*x^k/k)+x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(((1+2*x)^4*(1+8*x)^4/((1-x)*(1-4*x)^6*(1-16*x))+x*O(x^n))^(1/27), n)}
CROSSREFS
Cf. A211893, A211894, A211895, A207969, A001045 (Jacobsthal).
Sequence in context: A357245 A157197 A363410 * A299433 A036286 A084008
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 25 2012
STATUS
approved