OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..191
FORMULA
Empirical: a(n) = 3*a(n-1) + 6*a(n-2) - 22*a(n-3) - 11*a(n-4) + 58*a(n-5) + 4*a(n-6) - 65*a(n-7) + 5*a(n-8) + 28*a(n-9) - 2*a(n-10) - 4*a(n-11).
Empirical g.f.: 2*x*(12 - 7*x - 96*x^2 + 38*x^3 + 267*x^4 - 70*x^5 - 307*x^6 + 57*x^7 + 141*x^8 - 14*x^9 - 22*x^10) / ((1 - 2*x)*(1 + x - x^2)*(1 - x - x^2)*(1 - 2*x^2)*(1 - x - 3*x^2 + x^3 + x^4)). - Colin Barker, Jul 16 2018
EXAMPLE
Some solutions for n=3:
..1..1..1.-1....3.-1..2.-1....0..1..1..1...-1..0.-1..0....1..0..2..0
..1.-3..1.-1...-1.-1..0.-1....1.-2..0.-2....0..1..0..1....0.-1.-1.-1
..1..1..1.-1....2..0..1..0....1..0..2..0...-1..0.-1..0....2.-1..3.-1
.-1.-1.-1..1...-1.-1..0.-1....1.-2..0.-2....0..1..0..1....0.-1.-1.-1
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 07 2012
STATUS
approved