OFFSET
1,2
COMMENTS
See A066272 for definition of anti-divisor.
Numbers of divisors of n such that number of proper divisors of n equals the number of anti-divisors of n: 1, 2, 2, 3, 4, 4, 4, 4, 6, 4, 4, 4, 6, 6, 4, 4, 4, 12, 4, 6, 10, 4, 8, 8, 4, 12, 4, 6, 4, 12, 4, 4, 4,...
Primes p such that number of proper divisors of p - 1 equals the number of anti-divisors of p - 1 and number of proper divisors of p + 1 equals the number of anti-divisors of p + 1 : 2, 103, 137, 257,...
Numbers whose sum of proper divisors equals the sum of their anti-divisors: 1, 5, 41,...
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
28 is here since it has 5 proper divisors {2, 4, 7, 14, 28} and 5 anti-divisors {3, 5, 8, 11, 19}.
MAPLE
PROG
(PARI) is(n)=numdiv(2*n+1)+numdiv(2*n-1)+numdiv(n>>valuation(n, 2))-numdiv(n)==4 || n==1 \\ Charles R Greathouse IV, Feb 04 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Feb 02 2013
EXTENSIONS
Entries corrected by R. J. Mathar, Feb 03 2013
STATUS
approved