[go: up one dir, main page]

login
A209724
1/4 the number of (n+1) X 6 0..2 arrays with every 2 X 2 subblock having distinct clockwise edge differences.
3
8, 9, 10, 12, 14, 18, 22, 30, 38, 54, 70, 102, 134, 198, 262, 390, 518, 774, 1030, 1542, 2054, 3078, 4102, 6150, 8198, 12294, 16390, 24582, 32774, 49158, 65542, 98310, 131078, 196614, 262150, 393222, 524294, 786438, 1048582, 1572870, 2097158
OFFSET
1,1
COMMENTS
Column 5 of A209727.
Conjecture: a(1) = 8; for n > 1, a(n) is the smallest integer m such that m = ((2x * a(n-1)) /(x+1)) - x , with x a positive nontrivial divisor of m. (This is true at least for a(1) to a(100).) - Enric Reverter i Bigas, Oct 11 2020
LINKS
FORMULA
Empirical: a(n) = a(n-1) +2*a(n-2) -2*a(n-3).
Conjectures from Colin Barker, Mar 07 2018: (Start)
G.f.: x*(8 + x - 15*x^2) / ((1 - x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2-1) + 6 for n even.
a(n) = 2^((n+1)/2) + 6 for n odd.
(End)
EXAMPLE
Some solutions for n=4:
..2..1..2..1..2..1....2..0..2..0..1..0....2..1..2..1..2..1....0..1..0..1..0..2
..0..2..0..2..0..2....1..2..1..2..0..2....0..2..0..2..0..2....2..0..2..0..2..1
..1..0..1..0..1..0....2..0..2..0..1..0....2..1..2..1..2..1....0..1..0..1..0..2
..0..2..0..2..0..2....1..2..1..2..0..2....0..2..0..2..0..2....2..0..2..0..2..1
..1..0..1..0..1..0....2..0..2..0..1..0....1..0..1..0..1..0....0..1..0..1..0..2
CROSSREFS
Sequence in context: A068019 A054011 A280946 * A114842 A169928 A067683
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 12 2012
STATUS
approved