OFFSET
1,8
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
Tilman Piesk, Partition related number triangles
FORMULA
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 4, 2, 1;
1, 3, 8, 8, 3, 1;
1, 3, 12, 17, 12, 3, 1;
1, 4, 19, 41, 41, 19, 4, 1;
1, 4, 27, 78,116, 78, 27, 4, 1;
1, 5, 38,148,298,298,148, 38, 5, 1
MATHEMATICA
b[n_, k_] := Binomial[n - 1, n - k]*Binomial[n, n - k];
T[n_, k_] := (n*Binomial[Quotient[n - 1, 2], Quotient[k - 1, 2]]*Binomial[ Quotient[n, 2], Quotient[k, 2]] + DivisorSum[GCD[n, k], EulerPhi[#]* b[n/#, k/#]&] + DivisorSum[GCD[n, k - 1], EulerPhi[#]*b[n/#, (n + 1 - k)/#]&] - k*Binomial[n, k]^2/(n - k + 1))/(2*n);
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 30 2018, after Andrew Howroyd *)
PROG
(PARI)
b(n, k)=binomial(n-1, n-k)*binomial(n, n-k);
T(n, k)=(n*binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2) + sumdiv(gcd(n, k), d, eulerphi(d)*b(n/d, k/d)) + sumdiv(gcd(n, k-1), d, eulerphi(d)*b(n/d, (n+1-k)/d)) - k*binomial(n, k)^2/(n-k+1))/(2*n); \\ Andrew Howroyd, Nov 15 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tilman Piesk, Mar 10 2012
STATUS
approved