[go: up one dir, main page]

login
A209513
Number of (n+1) X 5 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock equal to the number of counterclockwise edge increases.
1
14739, 951777, 62340543, 4099186545, 269845393359, 17769569448759, 1170258116647953, 77072446894479573, 5075985987097377855, 334304949001956117279, 22017374591969387056413, 1450067958051127482119577
OFFSET
1,1
COMMENTS
Column 4 of A209517.
LINKS
FORMULA
Empirical: a(n) = 115*a(n-1) -4157*a(n-2) +69117*a(n-3) -595705*a(n-4) +2449306*a(n-5) -240335*a(n-6) -43350087*a(n-7) +178528425*a(n-8) -183199822*a(n-9) -751284432*a(n-10) +2871335435*a(n-11) -3549608757*a(n-12) -650892687*a(n-13) +7285361378*a(n-14) -9372087568*a(n-15) +5616780205*a(n-16) -1330498112*a(n-17) -261001088*a(n-18) +232979629*a(n-19) -45081325*a(n-20) -1230938*a(n-21) +1537784*a(n-22) -190656*a(n-23) +8208*a(n-24) -108*a(n-25).
EXAMPLE
Some solutions for n=4:
..1..0..1..2..0....2..1..0..2..1....2..2..1..2..2....2..2..0..0..1
..1..1..2..0..2....2..1..0..2..1....2..1..2..1..1....1..2..0..1..2
..2..2..1..2..2....2..1..0..2..2....1..2..1..1..1....1..2..2..0..1
..2..1..0..1..1....0..2..1..0..2....1..1..0..1..2....0..1..2..0..0
..2..1..0..1..0....0..2..2..1..0....1..2..1..1..2....1..0..1..2..2
CROSSREFS
Sequence in context: A219068 A023333 A249464 * A178587 A178588 A089315
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 09 2012
STATUS
approved