OFFSET
1,2
LINKS
Boris Putievskiy, Rows n = 1..140 of triangle, flattened
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Eric Weisstein's World of Mathematics, Pairing functions
FORMULA
EXAMPLE
The start of the sequence as table T(r,s) r,s >0 read by antidiagonals:
1...2...2...3...3...4...4...5...
1...3...2...4...3...5...4...6...
1...4...2...5...3...6...4...7...
1...5...2...6...3...7...4...8...
1...6...2...7...3...8...4...9...
1...7...2...8...3...9...4..10...
1...8...2...9...3..10...4..11...
. . .
The start of the sequence as triangle array read by rows:
1;
2, 1;
2, 3, 1;
3, 2, 4, 1;
3, 4, 2, 5, 1;
4, 3, 5, 2, 6, 1;
4, 5, 3, 6, 2, 7, 1;
5, 4, 6, 3, 7, 2, 8, 1;
. . .
Row number r contains permutation numbers form 1 to r.
If r is odd (r+1)/2, (r+1)/2 +1, (r+1)/2 -1, ... 2, r, 1.
If r is even r/2 + 1, r/2, r/2 + 2, ... 2, r, 1.
MATHEMATICA
T[r_, s_] := If[OddQ[s], (s+1)/2, r + s/2];
Table[T[r-s+1, s], {r, 1, 11}, {s, r, 1, -1}] // Flatten (* Jean-François Alcover, Nov 19 2019 *)
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
result=int((t+3)/2)+int(i/2)*(-1)**(i+t)
(PARI) T(r, s)=s\2+if(bittest(s, 0), 1, r) \\ - M. F. Hasler, Jan 15 2013
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Jan 15 2013
STATUS
approved