[go: up one dir, main page]

login
A209278
Second inverse function (numbers of rows) for pairing function A185180.
7
1, 2, 1, 2, 3, 1, 3, 2, 4, 1, 3, 4, 2, 5, 1, 4, 3, 5, 2, 6, 1, 4, 5, 3, 6, 2, 7, 1, 5, 4, 6, 3, 7, 2, 8, 1, 5, 6, 4, 7, 3, 8, 2, 9, 1, 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 6, 7, 5, 8, 4, 9, 3, 10, 2, 11, 1
OFFSET
1,2
LINKS
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Eric Weisstein's World of Mathematics, Pairing functions
FORMULA
a(n) = floor((A003056(n)+3)/2) + floor(A002260(n)/2)*(-1)^(A002260(n)+A003056(n)).
a(n)= floor((t+3)/2)+ floor(i/2)*(-1)^(i+t),
where t=floor((-1+sqrt(8*n-7))/2), i=n-t*(t+1)/2.
T(r,2s-1)=s, T(r,2s)= r+s. (When read as square array by antidiagonals.)
EXAMPLE
The start of the sequence as table T(r,s) r,s >0 read by antidiagonals:
1...2...2...3...3...4...4...5...
1...3...2...4...3...5...4...6...
1...4...2...5...3...6...4...7...
1...5...2...6...3...7...4...8...
1...6...2...7...3...8...4...9...
1...7...2...8...3...9...4..10...
1...8...2...9...3..10...4..11...
. . .
The start of the sequence as triangle array read by rows:
1;
2, 1;
2, 3, 1;
3, 2, 4, 1;
3, 4, 2, 5, 1;
4, 3, 5, 2, 6, 1;
4, 5, 3, 6, 2, 7, 1;
5, 4, 6, 3, 7, 2, 8, 1;
. . .
Row number r contains permutation numbers form 1 to r.
If r is odd (r+1)/2, (r+1)/2 +1, (r+1)/2 -1, ... 2, r, 1.
If r is even r/2 + 1, r/2, r/2 + 2, ... 2, r, 1.
MATHEMATICA
T[r_, s_] := If[OddQ[s], (s+1)/2, r + s/2];
Table[T[r-s+1, s], {r, 1, 11}, {s, r, 1, -1}] // Flatten (* Jean-François Alcover, Nov 19 2019 *)
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
result=int((t+3)/2)+int(i/2)*(-1)**(i+t)
(PARI) T(r, s)=s\2+if(bittest(s, 0), 1, r) \\ - M. F. Hasler, Jan 15 2013
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Jan 15 2013
STATUS
approved