[go: up one dir, main page]

login
A208284
Number of n X 5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 0 vertically.
1
16, 256, 1260, 3984, 9900, 21096, 40376, 71360, 118584, 187600, 285076, 418896, 598260, 833784, 1137600, 1523456, 2006816, 2604960, 3337084, 4224400, 5290236, 6560136, 8061960, 9825984, 11885000, 14274416, 17032356, 20199760, 23820484
OFFSET
1,1
COMMENTS
Column 5 of A208287.
LINKS
FORMULA
Empirical: a(n) = (5/6)*n^5 + 9*n^4 + (91/6)*n^3 - 9*n^2.
Conjectures from Colin Barker, Jun 29 2018: (Start)
G.f.: 4*x*(2 - x)*(2 + 21*x + 6*x^2 - 4*x^3) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
EXAMPLE
Some solutions for n=4:
..0..1..0..1..0....0..1..0..1..0....0..1..0..1..1....1..0..1..1..1
..1..0..1..0..0....1..1..0..1..1....0..1..0..1..0....0..1..0..1..1
..1..1..0..1..0....1..1..0..1..0....0..1..0..1..0....0..1..1..1..1
..1..1..0..1..0....1..1..0..1..0....0..1..0..1..0....0..1..1..1..1
CROSSREFS
Cf. A208287.
Sequence in context: A207951 A207860 A207810 * A208417 A208025 A207805
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 25 2012
STATUS
approved