OFFSET
1,2
LINKS
EXAMPLE
A Sylow 2-subgroup of S_4 is of order 8, and contains no 3-cycle. The only subgroups of S_4 with more than 8 elements are A_4 and S_4, which both contain 3-cycles. So a(4) = 8.
PROG
(GAP)
Has3:=function(G, n)
local x, p;
for p in Elements(G) do
x:=Product(CycleLengths(p, [1..n]));
if x = 3 then return true; fi;
od;
return false;
end;;
a:=function(n)
local MM, h, nn;
MM:=0;;
for H in ConjugacyClassesSubgroups(SymmetricGroup(n)) do
h:=Representative(H);
if Size(h)<=MM then continue; fi;
if Has3(h, n) = false then
nn:=Size(h);
if nn > MM then MM:=nn; Mg:=h; fi;
fi;
od;;
return MM;
end;;
CROSSREFS
KEYWORD
nonn,more
AUTHOR
W. Edwin Clark, Jan 10 2013
EXTENSIONS
a(10)-a(13) from Stephen A. Silver, Feb 14 2013
STATUS
approved