[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A207680 Number of nX6 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically 1
19, 361, 702, 2132, 5704, 11994, 25076, 52632, 109811, 215506, 431270, 856818, 1671738, 3290063, 6359426, 12365486, 23939738, 45966515, 88735852, 170028536, 325975917, 624553353, 1192281784, 2279867642, 4348061061, 8290055552 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Column 6 of A207682
LINKS
FORMULA
Empirical: a(n) = a(n-1) +4*a(n-2) +10*a(n-3) -17*a(n-4) -36*a(n-5) -56*a(n-6) +93*a(n-7) +172*a(n-8) +247*a(n-9) -280*a(n-10) -538*a(n-11) -793*a(n-12) +506*a(n-13) +1147*a(n-14) +1793*a(n-15) -488*a(n-16) -1764*a(n-17) -2886*a(n-18) -9*a(n-19) +2098*a(n-20) +3325*a(n-21) +837*a(n-22) -2053*a(n-23) -2784*a(n-24) -1426*a(n-25) +1663*a(n-26) +1753*a(n-27) +1358*a(n-28) -1076*a(n-29) -863*a(n-30) -854*a(n-31) +547*a(n-32) +339*a(n-33) +366*a(n-34) -217*a(n-35) -103*a(n-36) -102*a(n-37) +64*a(n-38) +21*a(n-39) +16*a(n-40) -12*a(n-41) -2*a(n-42) -a(n-43) +a(n-44) for n>51
EXAMPLE
Some solutions for n=4
..0..0..1..0..0..1....1..1..1..1..1..1....0..1..1..0..0..1....0..0..1..1..1..1
..1..0..0..1..1..1....0..1..0..0..1..0....1..1..0..0..1..0....1..0..0..1..0..0
..0..0..1..1..0..0....1..0..0..1..0..0....0..0..1..0..0..1....0..0..1..0..0..1
..0..0..1..0..0..1....1..0..0..1..1..0....0..0..1..0..0..1....1..0..0..1..0..0
CROSSREFS
Sequence in context: A209227 A208504 A207877 * A223224 A207893 A207883
KEYWORD
nonn
AUTHOR
R. H. Hardin Feb 19 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 05:37 EDT 2024. Contains 375526 sequences. (Running on oeis4.)