[go: up one dir, main page]

login
A206262
Number of (n+1) X 4 0..1 arrays with the number of rightwards and downwards edge increases in each 2 X 2 subblock equal to the number in all its horizontal and vertical neighbors.
1
34, 44, 78, 135, 218, 339, 503, 724, 1009, 1374, 1828, 2389, 3068, 3885, 4853, 5994, 7323, 8864, 10634, 12659, 14958, 17559, 20483, 23760, 27413, 31474, 35968, 40929, 46384, 52369, 58913, 66054, 73823, 82260, 91398, 101279, 111938, 123419, 135759
OFFSET
1,1
COMMENTS
Column 3 of A206267.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>7.
Conjectures from Colin Barker, Jun 15 2018: (Start)
G.f.: x*(34 - 92*x + 72*x^2 + 43*x^3 - 102*x^4 + 58*x^5 - 11*x^6) / ((1 - x)^5*(1 + x)).
a(n) = (336 + 154*n + 71*n^2 + 14*n^3 + n^4) / 24 for n>1 and even.
a(n) = (312 + 154*n + 71*n^2 + 14*n^3 + n^4) / 24 for n>1 and odd.
(End)
EXAMPLE
Some solutions for n=4:
..1..1..1..1....0..0..1..1....1..1..1..1....1..1..0..0....0..0..1..0
..0..0..0..0....1..0..0..1....1..1..1..1....1..1..0..0....0..1..0..1
..0..0..0..0....1..1..0..0....1..1..0..0....0..0..0..0....1..0..1..0
..0..0..0..0....0..1..1..0....0..0..0..0....0..0..0..0....0..1..0..1
..0..0..0..0....0..0..1..1....0..0..0..0....0..0..0..0....1..0..1..1
CROSSREFS
Cf. A206267.
Sequence in context: A076772 A359331 A248527 * A302457 A063470 A089715
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 05 2012
STATUS
approved