[go: up one dir, main page]

login
A206095
a(n) = smallest number congruent to a quadratic non-residue modulo each of the first n odd primes.
0
2, 2, 17, 17, 83, 167, 167, 227, 398, 398, 5297, 64382, 69467, 116387, 214037, 214037, 430022, 5472953, 8062073, 8062073, 41941577, 86374763, 163520117, 163520117, 231912722, 231912722, 231912722, 545559467, 1728061733
OFFSET
1,1
EXAMPLE
For instance 83, the 5th term, does not differ from any square by any multiple of 3, 5, 7, 11 or 13, unlike all smaller positive integers.
PROG
(PARI) a(n) = {n++; sm = 2; ok = 0; until (ok, ok = 1; for (in = 2, n, p = prime(in); if (kronecker(sm % p, p) != -1, ok = 0; break); ); if (! ok, sm++); ); return(sm); } \\ Michel Marcus, Jul 19 2013
CROSSREFS
Sequence in context: A100680 A002567 A238289 * A222451 A376245 A000528
KEYWORD
nonn
AUTHOR
Keith F. Lynch, Feb 03 2012
STATUS
approved