[go: up one dir, main page]

login
A205617
Number of decompositions of 2n into an unordered sum of two non-Ramanujan primes (A174635).
3
0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 3, 0, 1, 3, 1, 2, 2, 1, 3, 2, 0, 1, 3, 2, 1, 3, 1, 3, 4, 1, 2, 4, 1, 4, 2, 0, 3, 2, 3, 2, 3, 2, 3, 5, 1, 3, 4, 0, 5, 1, 0, 4, 3, 3, 1, 4, 3, 5, 4, 0, 4, 3, 1, 4, 2, 2, 6, 2, 3, 4, 4, 1, 3
OFFSET
1,5
COMMENTS
There are 15 zeros in the first 10^8 terms. a(n) > 0 for n from 315 to 10^8.
LINKS
J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly 116 (2009), 630-635.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2
EXAMPLE
a(25) = 3. 2*25 = 50 = 7+43 = 13+37 = 19+31 (7, 13, 19, 31, 37, and 43 are all non-Ramanujan primes (A174635)). 50 is the unordered sum of two non-Ramanujan primes in three ways.
KEYWORD
nonn
AUTHOR
STATUS
approved