[go: up one dir, main page]

login
A205117
The number s(j) such that n divides s(k)-s(j), where s(j) is the j-th Lucas number and k is the least positive integer for which such a j with 0<j<k exists.
3
1, 1, 1, 3, 1, 1, 4, 3, 11, 1, 7, 11, 3, 4, 3, 11, 1, 11, 47, 7, 18, 7, 1, 4, 4, 3, 47, 1, 18, 3, 843, 7, 1, 29, 18, 11, 3, 47, 4, 7, 76, 3, 4, 3, 7, 1, 29, 7, 3, 7, 11, 1, 4, 47, 47, 11, 322, 18, 76, 3
OFFSET
1,4
COMMENTS
For a guide to related sequences, see A204892.
LINKS
MAPLE
lucas:= gfun:-rectoproc({a(n)=a(n-1)+a(n-2), a(0)=2, a(1)=1}, a(n), remember):
f:= proc(n) local j, k, S, t;
S:= [];
for k from 1 do
t:= lucas(k) mod n;
if member(t, S, j) then return lucas(j) fi;
S:= [op(S), t];
od
end proc:
map(f, [$1..100]); # Robert Israel, Jan 21 2018
MATHEMATICA
(See the program at A205114.)
CROSSREFS
Sequence in context: A144336 A036040 A080575 * A077228 A049687 A362036
KEYWORD
nonn,look
AUTHOR
Clark Kimberling, Jan 22 2012
EXTENSIONS
Name corrected by Robert Israel, Jan 21 2018
STATUS
approved