OFFSET
1,1
COMMENTS
Table starts
...8..16..28...48...80...132...216...352...572....928...1504...2436...3944
..16..32..56...90..137...200...283...390...526....696....906...1162...1471
..28..56.104..178..284...434...637...908..1259...1708...2270...2966...3814
..48..90.178..330..571...938..1478..2248..3317...4766...6690...9198..12415
..80.137.284..571.1076..1918..3261..5329..8408..12867..19162..27859..39640
.132.200.434..938.1918..3702..6780.11868.19969..32450..51134..78404.117324
.216.283.637.1478.3261..6780.13314.24862.44426..76378.126906.204583.321038
.352.390.908.2248.5329.11868.24862.49312.93219.168960.295101.498776.818748
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..6956
FORMULA
Empirical: T(n,k) recurrences
T(1,k)=2*T(1,k-1)-T(1,k-3)
T(2,k)=4*T(2,k-1)-5*T(2,k-2)+5*T(2,k-4)-4*T(2,k-5)+T(2,k-6)
T(3,k)=4*T(3,k-1)-5*T(3,k-2)+5*T(3,k-4)-4*T(3,k-5)+T(3,k-6) for k>7
T(4,k)=5*T(4,k-1)-9*T(4,k-2)+5*T(4,k-3)+5*T(4,k-4)-9*T(4,k-5)+5*T(4,k-6)-T(4,k-7) for k>9
and in general for n>2 (checked to n=15 k=210):
row recurrence coefficients are the coefficients of (1+x)*(1-x)^(k+2) and the row recurrence is valid for k>2*n+1
EXAMPLE
Some solutions for n=5 k=3
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..1
..0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..1
..0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..1
..0..0..1..1....0..0..1..1....0..0..0..1....0..0..0..1....0..0..1..1
..0..0..1..1....1..1..1..1....0..0..0..1....0..0..0..1....0..1..1..1
..0..0..1..1....1..1..1..1....1..1..1..0....0..1..1..1....0..1..1..1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 17 2012
STATUS
approved