OFFSET
0,2
COMMENTS
Analog to Euler's identity: Product_{n>=1} (1+x^n) = Product_{n>=1} 1/(1-x^(2*n-1)), which is the g.f. for the number of partitions of distinct parts.
LINKS
Eric Weisstein's World of Mathematics, Euler Identity.
FORMULA
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 26*x^3 + 57*x^4 + 222*x^5 + 698*x^6 +...
where A(x) = (1+2*x-x^2) * (1+6*x^2+x^4) * (1+14*x^3-x^6) * (1+34*x^4+x^8) * (1+82*x^5-x^10) * (1+198*x^6+x^12) *...* (1 + A002203(n)*x^n + (-1)^n*x^(2*n)) *...
and 1/A(x) = (1-2*x-x^2) * (1-14*x^3-x^6) * (1-82*x^5-x^10) * (1-478*x^7-x^14) * (1-2786*x^9-x^18) * (1-16238*x^11-x^22) *...* (1 - A002203(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)) *...
Also, the logarithm of the g.f. equals the series:
log(A(x)) = 1*2*x + 1*6*x^2/2 + 4*14*x^3/3 + 1*34*x^4/4 + 6*82*x^5/5 + 4*198*x^6/6 + 8*478*x^7/7 + 1*1154*x^8/8 +...+ A000593(n)*A002203(n)*x^n/n +...
The companion Pell numbers (starting at offset 1) begin:
A002203 = [2,6,14,34,82,198,478,1154,2786,6726,16238,...]
and form the logarithm of a g.f. for Pell numbers:
log(1/(1-2*x-x^2)) = 2*x + 6*x^2/2 + 14*x^3/3 + 34*x^4/4 + 82*x^5/5 +...
PROG
(PARI) /* Subroutine used in PARI programs below: */
{A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
(PARI) {a(n)=polcoeff(prod(k=1, n, 1+A002203(k)*x^k+(-1)^k*x^(2*k) +x*O(x^n)), n)}
(PARI) {a(n)=polcoeff(1/prod(k=1, n, 1-A002203(2*k-1)*x^(2*k-1)-x^(4*k-2) +x*O(x^n)), n)}
(PARI) /* Exponential form using sum of odd divisors of n: */
{A000593(n)=if(n<1, 0, sumdiv(n, d, (-1)^(d+1)*n/d))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 13 2012
STATUS
approved