OFFSET
1,1
COMMENTS
Sums of coefficients from (4n)th moments of binomial(m,k)*binomial(3*m,k): see Maple code below.
LINKS
Eric W. Weisstein, MathWorld: Binomial Sums
FORMULA
a(n) = -(1/32)*Gamma(2*n-3/2)*Gamma(n-1/2)*(-1)^n*64^n/Pi.
EXAMPLE
The evaluation of sum(binomial(n,k)*binomial(3*n,k)*k^8,k=0..n) involves the polynomial 729*n^13+729*n^12-12879*n^11+9801*n^10+50247*n^9-84825*n^8-105*n^7+74167*n^6-36968*n^5-2296*n^4+1472*n^3-120*n^2, the sum of the coefficients of which is a(2)=-48.
MAPLE
with(PolynomialTools); polyn:=q->expand(simplify((1/(GAMMA(n-((2*floor((q+1)/4)-1))/(2))))*(1/sqrt(3))*GAMMA(n+1/3)*GAMMA(n+2/3)*(1/3)*(1/(27^(-n)))*GAMMA(n)*1/64^n*sum(binomial(n, k)*binomial(3*n, k)*k^q, k=0..n)*(1/(GAMMA(2*n-((2*floor(q/2)-1)/(2)))))*(2^((floor((1/2)*q+1/2)-1)+q)))); coefl:=h->CoefficientList(expand(polyn(h)), n); coe:=(d, b)->coefl(d)[b]; seq(sum(coe((4*g), a), a=1..(2*(4*g)-floor(((4*g)+3)/4))), g=1..6); seq(simplify(-(1/32)*GAMMA(2*n-3/2)*GAMMA(n-1/2)*(-1)^n*64^n/Pi), n=1..6);
CROSSREFS
KEYWORD
sign,easy
AUTHOR
John M. Campbell, Jan 05 2012
STATUS
approved